|本期目录/Table of Contents|

[1]寇川,梁艳,张畅,等.衍生物Fla-CN的抗糖尿病作用及其作用机制研究[J].天津医科大学学报,2020,26(04):317-323.
 KOU Chuan,LIANG Yan,ZHANG Chang,et al.Study on the anti-diabetic effect and mechanism of the derivative Fla-CN[J].Journal of Tianjin Medical University,2020,26(04):317-323.
点击复制

衍生物Fla-CN的抗糖尿病作用及其作用机制研究(PDF)
分享到:

《天津医科大学学报》[ISSN:1006-8147/CN:12-1259/R]

卷:
26卷
期数:
2020年04期
页码:
317-323
栏目:
基础医学
出版日期:
2020-07-15

文章信息/Info

Title:
Study on the anti-diabetic effect and mechanism of the derivative Fla-CN
文章编号:
1006-8147(2020)04-0317-07
作者:
寇川梁艳张畅秦楠段宏泉陈莹
(天津医科大学药学院天然药物化学系,天津 300070)
Author(s):
KOU Chuan LIANG Yan ZHANG Chang QIN Nan DUAN Hong-quan CHEN Ying
(Department of Nature Pharmaceutical Chemistry, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China)
关键词:
Fla-CN糖尿病糖摄取糖异生AMPK通路
Keywords:
Fla-CNdiabetes mellitus glucose uptakegluconeogenesisAMPK signal pathway
分类号:
R589
DOI:
-
文献标志码:
A
摘要:
目的:体内外研究黄酮衍生物Fla-CN的抗糖尿病作用及其机制。方法:体外实验以人肝HepG2细胞为研究对象,不同浓度Fla-CN孵育后,利用荧光标记 2-脱氧葡萄糖(2-NBDG),通过检测HepG2 细胞内2-NBDG的荧光强度,观察Fla-CN对肝细胞葡萄糖摄取的影响;采用硫酸-蒽酮比色法检测HepG2细胞内糖原含量;通过检测一定时间内葡萄糖生成量,观察Fla-CN对肝细胞糖异生过程的影响。体内实验采用2型糖尿病模型db/db小鼠为研究对象,给予Fla-CN和二甲双胍干预4 周后,测定db/db小鼠空腹血糖、糖耐量以及胰岛素耐量,计算糖耐量、胰岛素耐量实验血糖-曲线下面积(AUC)。通过Western印迹法检测化合物干预后小鼠肝组织中磷酸化AMP活化蛋白激酶 (AMPK)、糖异生关键酶磷酸烯醇式丙酮酸羧激酶(PEPCK)、葡萄糖-6-磷酸酶(G6Pase)及转录调控因子过氧化物酶体增殖物激活受体γ协同刺激因子1α(PGC-1α)的表达。进一步通过Western 印迹检测AMPK抑制剂Compound C或AMPK激动剂AICAR 与Fla-CN联用后,HepG2细胞内PEPCK、G6Pase、PGC-1α的蛋白表达。结果:Fla-CN能够促进HepG2细胞对葡萄糖的摄取(F=33.50,P<0.01)和糖原合成(F=93.63,P<0.01),抑制糖异生(F=44.19,P<0.01)。同时,Fla-CN显著降低2型糖尿病db/db小鼠空腹血糖以及时间-血糖曲线下面积(F=98.40,P<0.05)。Western印迹显示Fla-CN能够激活db/db小鼠肝组织中 AMPK,抑制PEPCK、G6Pase 以及PGC-1α 的表达,并呈现一定剂量依赖性。Compound C能在一定程度上阻断Fla-CN对AMPK的激活和对PEPCK、G6Pase 以及PGC-1α的抑制作用。结论:黄酮衍生物Fla-CN通过激活AMPK,有效调节肝 HepG2 细胞糖代谢,抑制肝糖异生,降低2型糖尿病db/db小鼠空腹血糖,改善其受损的糖耐量,提高胰岛素敏感性。
Abstract:
Objective: To study the anti-diabetic effect and mechanism of the flavonoid derivative Fla-CN in vitro and in vivo. Methods: In vitro experiment, HepG2 cells were incubated with different concentrations of Fla-CN, and the fluorescence intensity of 2-NBDG in HepG2 cells was detected to observe the effect of Fla-CN on glucose uptake in hepatocytes. The glycogen content in HepG2 cells was measured by sulfuric acid anthronecolorimetry. The glucose production was measured to investigate the effect of Fla-CN on gluconeogenesis of hepatocytes. In vivo experiments, db/db mice model of type 2 diabetes were used as the subjects of study. After intervention with Fla-CN and metformin for 4 weeks, fasting blood glucose, glucose tolerance and insulin tolerance of db/db mice were investigated, and AUC of glucose tolerance and insulin tolerance were calculated. Western blotting was used to detect the expression of AMP dependent protein kinase (AMPK) phosphorylation, phosphoenolpyruvate carboxykinase(PEPCK), glucose-6-phosphatase(G6Pase) and peroxisome proliferator activated receptor γ coactivator-1 α(PGC-1α) in the liver tissue of mice. The protein expression of PEPCK, G6Pase and PGC-1α in HepG2 cells was further detected by Western blotting after an incubation of AMPK inhibitor Compound C or AMPK agonist AICAR combined with Fla-CN. Results: Fla-CN could promote glucose uptake (F=33.50, P<0.01), glycogen synthesis (F=93.63, P<0.01) and inhibit gluconeogenesis(F=44.19,P<0.01) in HepG2 cells. Meanwhile, Fla-CN significantly reduced fasting blood glucose and its AUC in db/db mice (F=98.40, P<0.05). Western blotting showed that Fla-CN could activate AMPK, inhibit the expression of PEPCK, G6Pase and PGC-1α in the liver of db/db mice in a dose-dependent manner. Compound C could impair the activation of AMPK and the inhibition of PEPCK, G6Pase and PGC-1α by Fla-CN. Conclusion: Fla-CN could effectively regulate the glucose metabolism of HepG2 cells, reduce the fasting blood glucose of db/db mice, and improve the impaired glucose tolerance and insulin sensitivity. Further studies have shown that Fla-CN promotes glucose uptake and inhibits glyconeogenesis by activating AMPK in liver.

参考文献/References:

[1] Deshpande A D, Harris-Hayes M, Schootman M. Epidemiology of diabetes and diabetes-related complications[J]. Phys Ther,2008, 88(11):1254
[2] Srikanth S, Deedwania P. Primary and secondary prevention strategy for cardiovascular disease in diabetes mellitus[J]. Cardiol Clin, 2011, 29(1):47
[3] Lam D W, Le Roith D. The worldwide diabetes epidemic[J]. Curr Opin Endocrinol Diabetes Obes,2012,19(2):93
[4] Qin N, Li C B, Jin M N, et al. Synthesis and biological activity of novel tilirosidederivants[J]. Eur J Med Chem, 2011, 46(10):5189
[5] Hummel K P, Dickie M M, Coleman D L. Diabetes, a new mutaftonin the mouse[J]. Science, 1966, 153(3740):1127
[6] Zhang F, Sun C, Wu J, et al. Combretastatin A-4 activates AMP-activated protein kinase and improves glucose metabolism in db/dbmice[J]. Pharmacol Res, 2008, 57(4):318
[7] Kim S J, Yuan H D, Chung S H. Ginsenoside Rg1 suppresses hepatic glucose production via AMP-activated protein kinase in HepG2 cells[J]. Biol Pharm Bull, 2010, 33(2):325
[8] Waltner-Law M E, Wang X L, Law B K, et al. Epigallocatechingallate, a constituent of green tea, represses hepatic glucose production[J]. J Biol Chem, 2002, 277(38):34933
[9] Aatsinki S M, Buler M, Salom?覿ki H, et al. Metformin induces PGC‐1α expression and selectively affects hepatic PGC‐1α functions[J]. Br J Pharmacol, 2014, 171(9):2351
[10] Stanford K I, Goodyear L J. Exercise and type 2 diabetes: molecular mechanisms regulating glucose uptake in skeletal muscle[J]. Adv Physiol Edu, 2014, 38(4):308
[11] Rizza R A. Pathogenesis of fasting and postprandial hyperglycemia in type 2 diabetes: implications for therapy[J]. Diabetes, 2010, 59(11):2697
[12] Zhang M, Lv X, Li J, et al. Sodium caprate augments the hypoglycemic effect of berberine via AMPK in inhibiting hepatic gluconeogenesis[J]. Mol Cell Endocrinol, 2012, 363(1/2):122
[13] Zanatta L, Rosso A, Folador P, et al. Insulinomimetic effect of kaempferol 3-neohesperidoside on the rat soleus muscle[J]. J Nat Prod, 2008, 71(4):532
[14] Quan H Y, Yuan H D, Jung M S, et al. Ginsenosidere lowers blood glucose and lipid levels via activation of AMP-activated protein kinase in HepG2 cells and high-fat diet fed mice[J]. Int J Mol Med, 2011,29(1):73
[15] Long Y C, Zierath J R. AMP-activated protein kinase signaling in metabolic regulation[J]. J Clin Invest, 2006, 116(7):1776
[16] Wang Z, Cao Y, Yin Q, et al. Activation of AMPK alleviates cardiopulmonary bypass induced cardiac injury via ameliorating acute cardiac glucose metabolic disorder[J]. Cardiovasc Ther, 2018, 36(6):e12482
[17] You H N, Park M H, Hwang S Y, et al. Nardostachysjatamansi DC extract alleviates insulin resistance and regulates glucose metabolism in C57BL/KsJ- db/db mice through the AMP-activated protein kinase signaling pathway[J]. J Med Food, 2018, 21(4):324
[18] Deshpande A D, Harris-Hayes M, Schootman M. Epidemiology of diabetes and diabetes-related complications[J]. Phys Ther, 2008, 88(11):1254
[19] Wang F, Yang X, Lu Y, et al. The natural product antroalbol H promotes phosphorylation of liver kinase B1(LKB1) at threonine 189 and thereby enhances cellular glucose uptake[J]. J Biol Chem, 2019, 294(27): 10415.
[20] Lochhead P A, Salt I P, Walker K S, et al. 5-aminoimidazole-4-carboxamide riboside mimics the effects of insulin on the expression of the 2 key gluconeogenic genes PEPCK and glucose-6-phosphatase[J]. Diabetes, 2000, 49(6):896
[21] Fabrizio A, Marc F, Claude K, et al. Liver adenosine monophosphate-activated kinase-α2 catalytic subunit is a key target for the control of hepatic glucose production by adiponectin and leptin but not insulin[J]. Endocrinology,2006,147(5):2432
[22] Shaw R J, Lamia K A, Vasquez D, et al. The kinase LKB1 mediatesglucose homeostasis in liver and therapeutic effects of metformin[J]. Science, 2005, 310(5754):1642
[23] Rodgers J T, Lerin C, Haas W, et al. Nutrient control of glucose homeostasis through a complex of PGC-1 and SIRT1[J]. Nature, 2005, 434(7029):113
[24] Rhee J, Inoue Y, Yoon J C, et al. Regulation of hepatic fasting response by PPAR coactivator-1 (PGC-1): requirement for hepatocyte nuclear factor 4 in gluconeogenesis[J]. Proc Natl Acad Sci, 2003, 100(7):4012
[25] Yoon J C ,Pulgserver P , Chen G , et al. Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1[J]. Nature, 2001, 413(6852):131

相似文献/References:

[1]王树峰,杨 丽,刘 寅.脂蛋白相关磷脂酶A2与冠心病和2型糖尿病的关系[J].天津医科大学学报,2013,19(06):456.
 WANG Shu-feng,YANG Li,LIU Yin.Relationship between lipoprotein-associated phospholipase A2 and coronary heart disease as well as type 2 diabetes mellitus[J].Journal of Tianjin Medical University,2013,19(04):456.
[2]苏东峰,聂秀玲,孙丽荣.2型糖尿病合并高尿酸血症临床特征及相关危险因素分析[J].天津医科大学学报,2013,19(06):481.
[3]武 鑫,李明珍,孙丽荣.2型糖尿病患者血清γ-谷氨酰转移酶与胰岛β细胞功能的关系[J].天津医科大学学报,2014,20(02):147.
 WU Xin,LI Ming-zhen,SUN Li-rong.Association of serum gamma-glutamyltransferase with islet β cell function in type 2 diabetic patients[J].Journal of Tianjin Medical University,2014,20(04):147.
[4]刘 芳,李明珍,孙丽荣.住院2型糖尿病患者睡眠质量与血糖及并发症的关系[J].天津医科大学学报,2014,20(03):213.
 LIU Fang,LI Ming-zhen,SUN Li-rong.Relationship between sleep quality and glucose level as well as diabetic complications in hospital patients with type 2 diabetes mellitus[J].Journal of Tianjin Medical University,2014,20(04):213.
[5]李凤英,朱铁虹.中年男性2型糖尿病患者促甲状腺激素与尿钙/肌酐比值的相关性研究[J].天津医科大学学报,2014,20(05):389.
 LI Feng-ying,ZHU Tie-hong.Relationship between thyroid stimulating hormone and urinary calcium/creatinine excretion in middle-aged man with type 2 diabetes[J].Journal of Tianjin Medical University,2014,20(04):389.
[6]谭艳萍,吴校伟,刘 寅,等. 冠心病合并糖尿病患者药物涂层支架术后观察[J].天津医科大学学报,2014,20(05):414.
[7]陈河清,郭秀梅,金力里.2型糖尿病患者牙周病与糖尿病肾病的相关性分析[J].天津医科大学学报,2014,20(06):469.
 CHEN He-qing,GUO Xiu-mei,JIN Li-li. Correlation between diabetic nephropathy and periodontal disease[J].Journal of Tianjin Medical University,2014,20(04):469.
[8]马 静,赵立华,谢 云.血浆纤维蛋白原与糖尿病肾病的相关性研究[J].天津医科大学学报,2015,21(03):60.
 Ma Jing,ZHAO Li-hua,XIE Yun.Relationship between plasma fibrinogen concentration and diabetic nephropathy [J].Journal of Tianjin Medical University,2015,21(04):60.
[9]马 静,赵立华,谢 云. 血浆纤维蛋白原与糖尿病肾病的相关性研究[J].天津医科大学学报,2015,21(01):60.
 MA Jing,ZHAO Li-hua,XIE Yun.Relationship between plasma fibrinogen concentration and diabetic nephropathy[J].Journal of Tianjin Medical University,2015,21(04):60.
[10]李 冰,冯 凭.罗格列酮干预糖尿病大鼠脂肪组织CMKLR1及Chemerin基因表达[J].天津医科大学学报,2015,21(06):484.
 LI Bing,FENG Ping.Effect of rosiglitazone on the expression of CMKLR1 and Chemerin mRNA in the adipose tissue of diabetic rat[J].Journal of Tianjin Medical University,2015,21(04):484.

备注/Memo

备注/Memo:
基金项目 国家自然科学基金面上项目(81373297)
作者简介 寇川(1993-),男,硕士在读,研究方向:中药和天然药物活性物质的现代研究;
通信作者:陈莹,E-mail:chenyingweixiao37@163.com。
更新日期/Last Update: 2020-07-15