|本期目录/Table of Contents|

[1]高漫芝,马勇杰.RasGRF1在乳腺癌中的表达及其临床意义[J].天津医科大学学报,2023,29(03):272-279.
 GAO Man-zhi,MA Yong-jie.Expression and clinical significance of RasGRF1 in breast cancer[J].Journal of Tianjin Medical University,2023,29(03):272-279.
点击复制

RasGRF1在乳腺癌中的表达及其临床意义(PDF)
分享到:

《天津医科大学学报》[ISSN:1006-8147/CN:12-1259/R]

卷:
29卷
期数:
2023年03期
页码:
272-279
栏目:
临床医学
出版日期:
2023-05-20

文章信息/Info

Title:
Expression and clinical significance of RasGRF1 in breast cancer
文章编号:
1006-8147(2023)03-0272-08
作者:
高漫芝马勇杰
(天津医科大学肿瘤医院肿瘤细胞生物学实验室,国家恶性肿瘤临床医学研究中心,天津市恶性肿瘤临床医学研究中心,乳腺癌防治教育部重点实验室,天津市“肿瘤防治”重点实验室,天津 300060)
Author(s):
GAO Man-zhiMA Yong-jie
(Cancer Cell Biology Laboratory,Tianjin Medical University Cancer Institute & Hospital,National Clinical Research Center for Cancer,Tianjin′s Clinical Research Center for Cancer,Key Laboratory of Breast Cancer Prevention and Therapy,Tianjin Medical University,Ministry of Education,Key Laboratory of Cancer Prevention and Therapy,Tianjin 300060,China)
关键词:
乳腺癌RasGRF1ERPR细胞黏附microRNA
Keywords:
breast cancerRasGRF1ERPRlymph nodemicroRNA
分类号:
R737.9
DOI:
-
文献标志码:
A
摘要:
目的:通过对大样本乳腺癌临床病例的研究,探讨鸟甘酸交换因子1(RasGRF1)在乳腺癌中的表达及其临床意义。方法:通过免疫组织化学染色的方法明确RasGRF1在乳腺癌组织中的表达方式,利用TIMER、DriverDBv3、bc-GenExMiner和LinkedOmics临床数据资源分析RasGRF1在乳腺癌组织中的表达趋势及其与乳腺癌患者预后的关系。在此基础上,探讨RasGRF1在不同分型的乳腺癌组织中的表达及其与不同分型的乳腺癌患者预后的关系,并且在ER-/PR-型的乳腺癌患者中深入研究调控RasGRF1的microRNA。结果:免疫组织化学染色结果显示,RasGRF1蛋白主要在乳腺癌组织的胞浆和胞膜中表达,在细胞核中几乎没有表达。与正常乳腺组织相比,RasGRF1蛋白在乳腺癌组织中高表达并且与患者的预后呈负相关。总生存(HR=2.04,P=0.000 67)、无病生存(HR=1.77,P=0.023 5)、无进展生存(HR=1.85,P=0.001 36)和疾病特异性生存(HR=2.83,P=3.23e-05)是乳腺癌预后的独立预后因子。与无淋巴结转移的患者相比,RasGRF1在有淋巴结转移的患者中高表达,并且其在淋巴结转移的乳腺癌患者中的表达与预后呈负相关(HR=1.86,95%CI:1.34~2.57,P=0.000 2)。与其他3种乳腺癌类型(ER+/PR+、ER+/PR-、ER-/PR+)相比,RasGRF1在ER-/PR-类型的乳腺癌组织中高表达并且与患者预后呈负相关(HR=2.05,95%CI:1.01~4.19,P=0.048 4)。在ER-/PR-类型的乳腺癌中RasGRF1的表达可能受hsa-mir-769的调控。结论:RasGRF1蛋白能够促进乳腺癌的进展,RasGRF1可作为乳腺癌预后的生物标志物及治疗靶点。
Abstract:
Objective: To explore the expression and clinical significance of guanosine acid factor 1(RasGRF1) gene in breast cancer by studying a large sample of breast cancer clinical cases. Methods:The expression of RasGRF1 in breast cancer tissues was determined by immunohistochemistry,TIMER,DriverDBv3,bc-GenExMiner,and LinkedOmics were used to analyze the expression trend of RasGRF1 in breast cancer tissues and its relationship with the prognosis of breast cancer patients. On this basis,the expression of RasGRF1 in different types of breast cancer tissues and its relationship with the prognosis of patients with different types of breast cancer were also discussed,furthermore,microRNA regulating RasGRF1 was found in ER-/PR- breast cancer patients. Results:The results of immunohistochemistry showed that RasGRF1 protein was mainly expressed in the cytoplasm and membrane of breast cancer tissues,but hardly expressed in the nucleus. Compared with normal breast tissues,RasGRF1 protein was highly expressed in breast cancer tissues and negatively correlated with the prognosis of patients. Overall survival(HR=2.04,P=0.000 67),disease-free survival(HR=1.77,P=0.023 5),progression-free survival(HR=1.85,P=0.001 36),and disease-specific survival(HR=2.83,P=3.23e-05),which were independent prognostic factors for breast cancer prognosis.It was found that RasGRF1 expression was higher in patients with lymph node metastasis than in patients without lymph node metastasis,and its expression in breast cancer patients with lymph node metastasis was negatively correlated with prognosis(HR=1.86,95%CI:1.34-2.57,P=0.000 2). Compared with the other three types of breast cancer(ER+/PR+,ER+/PR-,ER-/PR+),RasGRF1 was highly expressed in ER-/PR-type breast cancer tissues and negatively correlated with patient prognosis(HR=2.05,95%CI:1.01-4.19,P=0.048 4). The expression of RasGRF1 in ER-/ PR-type breast cancer might be regulated by hsa-mir-769. Conclusion:RasGRF1 protein can promote the progression of breast cancer,and RasGRF1 can be act as a biomarker and therapeutic target for breast cancer prognosis.

参考文献/References:

[1] WANG X,CHEN M,FANG L. hsa_circ_0068631 promotes breast cancer progression through c-Myc by binding to EIF4A3[J]. Mol Ther Nucleic Acids,2021,26:122-134.
[2] DE LA PUENTE A,HALL J,WU Y Z,et al. Structural characterization of Rasgrf1 and a novel linked imprinted locus[J]. Gene,2002,291(1/2):287-297.
[3] MARTEGANI E,VANONI M,ZIPPEL R,et al. Cloning by functional complementation of a mouse cDNA encoding a homologue of CDC25,a Saccharomyces cerevisiae RAS activator[J]. EMBO J,1992,11(6):2151-2157.
[4] BUCHSBAUM R,TELLIEZ J B,GOONESEKERA S,et al. The N-terminal pleckstrin,coiled-coil,and IQ domains of the exchange factor Ras-GRF act cooperatively to facilitate activation by calcium [J]. Mol Cell Biol,1996,16(9):4888-4896.
[5] CHEN H,XU Z,YANG B,et al. RASGRF1 Hypermethylation,a putative biomarker of colorectal cancer[J]. Ann Clin Lab Sci,2018,48(1):3-10.
[6] SIMANSHU D K,MORRISON D K. A structure is worth a thousand words:new insights for RAS and RAF regulation[J]. Cancer Discov,2022,12(4):899-912.
[7] MEGURO A,YAMANE T,TAKEUCHI M,et al. Genome-wide association study in asians identifies novel loci for high myopia and highlights a nervous system role in its pathogenesis[J]. Ophthalmology,2020,127(12):1612-1624.
[8] DENG D,XUE L,SHAO N,et al. miR-137 acts as a tumor suppressor in astrocytoma by targeting RASGRF1[J]. Tumour Biol,2016,37(3):3331-3340.
[9] PAN Y H,CHEN J,SUN C,et al. Effect of Ras-guanine nucleotide release factor 1-mediated H-Ras/ERK signaling pathway on glioma [J]. Brain Res,2021,1754:147247.
[10] COOPER A J,KOBAYASHI Y,KIM D,et al. Identification of a RAS-activating TMEM87A-RASGRF1 fusion in an exceptional responder to sunitinib with non-small cell lung cancer[J]. Clin Cancer Res,2020,26(15):4072-4079.
[11] LI T,FAN J,WANG B,et al. TIMER:a web server for comprehensive analysis of tumor-infiltrating immune cells[J]. Cancer Res,2017,77(21):e108-e110.
[12] LIU S H,SHEN P C,CHEN C Y,et al. DriverDBv3:a multi-omics database for cancer driver gene research[J]. Nucleic Acids Res,2020,48(D1):D863-D870.
[13] JEZEQUEL P,GOURAUD W,BEN AZZOUZ F,et al. bc-GenExMiner 4.5:new mining module computes breast cancer differential gene expression analyses[J]. Database (Oxford),2021,2021:baab007.
[14] TAKAMARU H,YAMAMOTO E,SUZUKI H,et al. Aberrant methylation of RASGRF1 is associated with an epigenetic field defect and increased risk of gastric cancer[J]. Cancer Prev Res (Phila),2012,5(10):1203-1212.
[15] TARNOWSKI M,SCHNEIDER G,AMANN G,et al. RasGRF1 regulates proliferation and metastatic behavior of human alveolar rhabdomyosarcomas[J]. Int J Oncol,2012,41(3):995-1004.
[16] WAKS A G,WINER E P. Breast cancer treatment:a review [J]. JAMA,2019,321(3):288-300.
[17] KIANI J,KHAN A,KHAWAR H,et al. Estrogen receptor alpha-negative and progesterone receptor-positive breast cancer:lab error or real entity?[J]. Pathol Oncol Res,2006,12(4):223-227.
[18] ITOH M,IWAMOTO T,MATSUOKA J,et al. Estrogen receptor (ER) mRNA expression and molecular subtype distribution in ER-negative/progesterone receptor-positive breast cancers[J]. Breast Cancer Res Treat,2014,143(2):403-409.
[19] WU N,FU F,CHEN L,et al. Single hormone receptor-positive breast cancer patients experienced poor survival outcomes:a systematic review and meta-analysis[J]. Clin Transl Oncol,2020,22(4):474-485.
[20] WU K,ZHANG C,ZHANG C,et al. A Novel Three-miRNA signature identified using bioinformatics predicts survival in esophageal carcinoma[J]. Biomed Res Int,2020,2020:5973082.
[21] ZHANG X,ZHANG D,BU X,et al. Identification of a novel miRNA-based recurrence and prognosis prediction biomarker for hepatocellular carcinoma[J]. BMC Bioinformatics,2022,23(1):479.
[22] LIU W,WANG B,DUAN A,et al. Exosomal transfer of miR-769-5p promotes osteosarcoma proliferation and metastasis by targeting DUSP16[J]. Cancer Cell Int,2021,21(1):541.
[23] CHANG M,YAN P,ZHANG B,et al. MicroRNA-769-5p promotes the growth of glioma cells by targeting lysine methyltransferase 2A[J]. Onco Targets Ther,2019,12:9177-9187.
[24] QIU H J,LU X H,YANG S S,et al. MiR-769 promoted cell proliferation in human melanoma by suppressing GSK3B expression [J]. Biomed Pharmacother,2016,82:117-123.

相似文献/References:

[1]朱悦,张诗武,张丹芳,等.TA2小鼠自发乳腺癌血清蛋白质组学研究[J].天津医科大学学报,2013,19(05):373.
[2]刘 营,孙保存,刘铁菊,等.AURKA蛋白激酶在三阴乳腺癌干细胞形成血管拟态中的实验研究[J].天津医科大学学报,2013,19(06):437.
 LIU Ying,SUN Bao-cun,LIU Tie-ju,et al.Experimental study of AURKA protein kinase in the formation of vascular mimicry in triple-negative breast cancer stem cells[J].Journal of Tianjin Medical University,2013,19(03):437.
[3]伦淑敏.HOXA5基因真核表达质粒的构建及在乳腺癌细胞中的功能研究[J].天津医科大学学报,2014,20(05):337.
 LUN Shu-min. Construction of HOXA5 eukaryotic expression plasmid of and its biological significance in breast cancer cells[J].Journal of Tianjin Medical University,2014,20(03):337.
[4]伦淑敏.肌细胞增强因子2A基因真核表达质粒的构建及对乳腺癌细胞MCF-7增殖能力的影响[J].天津医科大学学报,2014,20(06):429.
 LUN Shu-min.Construction of myocyte enhancer factor 2A eukaryotic expression plasmid and effects on cell proliferation in breast cancer cell line MCF7[J].Journal of Tianjin Medical University,2014,20(03):429.
[5]孙秀梅,张 飞,田 然,等.Nanog表达上调促进乳腺癌细胞MCF-7的增殖和侵袭[J].天津医科大学学报,2014,20(06):421.
 SUN Xiu-mei,ZHANG Fei,TIAN Ran,et al.Up-regulation of Nanog promotes cell proliferation and invasion in breast cancer cells MCF-7[J].Journal of Tianjin Medical University,2014,20(03):421.
[6]张 洁,张 飞,冀 为,等. SHP2不同突变体对乳腺癌细胞的迁移和侵袭能力的影响[J].天津医科大学学报,2015,21(02):93.
 ZHANG Jie,ZHANG Fei,JI Wei,et al. Effect of different SHP2 mutants on breast cancer cell migration and invasion[J].Journal of Tianjin Medical University,2015,21(03):93.
[7]蔡 隽. FOXQ1稳定表达乳腺癌细胞系的建立及鉴定[J].天津医科大学学报,2015,21(04):292.
 CAI Jun.Establishment and identification of cell lines with stable expression of FOXQ1 in MDA-MB-231-luc[J].Journal of Tianjin Medical University,2015,21(03):292.
[8]蔡 隽 综述,冯玉梅 审校.叉头框转录因子调控乳腺癌生物学特性的研究进展[J].天津医科大学学报,2015,21(05):455.
[9]任宗娜.沉默Notch4基因对乳腺癌细胞系MDA-MB-231增殖和迁移侵袭能力的影响[J].天津医科大学学报,2015,21(06):469.
 REN Zong-na.Inhibition effect of?silencing?? Notch4 gene on the proliferation and migration and invasion activity of? breast cancer cell line?MDA-MB-231[J].Journal of Tianjin Medical University,2015,21(03):469.
[10]周岩,宋伟杰,张飞,等.人附睾蛋白4在乳腺癌发生发展中的机制研究[J].天津医科大学学报,2015,21(06):466.
 ZHOU Yan,SONG Wei-jie,ZHANG Fei,et al.Mechanism of human epididymis protein 4 in development and progression of breast cancer[J].Journal of Tianjin Medical University,2015,21(03):466.

备注/Memo

备注/Memo:
基金项目 国家自然科学基金资助项目(82172987);天津市医学重点学科(专科)建设项目(TJYXZDXK-009A)
作者简介 高漫芝(1997-),女,硕士在读,研究方向:生物化学与分子生物学;通信作者:马勇杰,E-mail:mayongjie@tjmuch.com。
更新日期/Last Update: 1900-01-01