|本期目录/Table of Contents|

[1]韩鑫宇,李婷芳,王峰.GADD45A通过端粒替代延长途径调控骨肉瘤细胞增殖[J].天津医科大学学报,2023,29(03):265-271.
 HAN Xin-yu,LI Ting-fang,WANG Feng.GADD45A regulates the proliferation of osteosarcoma cell through alternative lengthening of telomeres[J].Journal of Tianjin Medical University,2023,29(03):265-271.
点击复制

GADD45A通过端粒替代延长途径调控骨肉瘤细胞增殖(PDF)
分享到:

《天津医科大学学报》[ISSN:1006-8147/CN:12-1259/R]

卷:
29卷
期数:
2023年03期
页码:
265-271
栏目:
基础医学
出版日期:
2023-05-20

文章信息/Info

Title:
GADD45A regulates the proliferation of osteosarcoma cell through alternative lengthening of telomeres
文章编号:
1006-8147(2023)03-0265-07
作者:
韩鑫宇李婷芳王峰
(天津医科大学基础医学院医学遗传学系,天津300070)
Author(s):
HAN Xin-yu LI Ting-fang WANG Feng
(Department of Genetics in Medicine,School of Basic Medical Science,Tianjin Medical University,Tianjin 300070,China)
关键词:
GADD45A骨肉瘤端粒端粒替代延长途径
Keywords:
GADD45Aosteosarcomatelomeresalternative lengthening of telomeres
分类号:
R394.2
DOI:
-
文献标志码:
A
摘要:
目的:探讨GADD45A对骨肉瘤细胞的增殖和端粒调控功能。方法:应用siRNA和shRNA处理骨肉瘤细胞U2OS,观察骨肉瘤细胞增殖、端粒功能和端粒延长替代途径的变化。qPCR检测GADD45A敲低后 mRNA水平。CCK-8实验和克隆形成实验检测骨肉瘤细胞增殖情况。细胞中期分裂相-荧光原位杂交实验检测端粒功能变化。免疫荧光-荧光原位杂交实验和C-circle实验检测端粒损伤情况和端粒延长替代途径相关表型。结果:qPCR结果表明,siRNA敲低GADD45A后 mRNA水平降低(t=25.96,P<0.000 1);shGADD45A-1和shGADD45A-2 GADD45A的mRNA水平降低(t=21.12、18.37,均P<0.000 1)。对应的CCK-8(t=5.051、6.192、3.775、14.86、22.93、3.013、14.61、20.93,均P<0.05)和克隆形成实验(t=46.68、23.73、24.98,均P<0.000 1)结果表明,敲低GADD45A抑制了骨肉瘤细胞增殖。细胞中期分裂相-荧光原位杂交实验结果显示,GADD45A缺失会加重端粒多信号(t=24.04、7.243、27.93,均P<0.01)和端粒信号缺失现象(t=8.222、16.61、6.781,均P<0.01)。免疫荧光-荧光原位杂交实验结果表明,siRNA敲低GADD45A后H2AX组蛋白变体和早幼粒细胞白血病体与端粒的共定位增加(t=19.16、10.65,均P<0.000 1);shGADD45A-1、shGADD45A-2也证实了H2AX组蛋白变体和早幼粒细胞白血病体与端粒共定位的比例升高(t=14.71、24.03、16.69、18.10,均P<0.000 1)。C-circle实验结果表明,siRNA敲低GADD45A以及shGADD45A-1和shGADD45A-2 两细胞系中染色体外端粒DNA环C-circle水平升高(t=41.27、14.06、4.539,均P<0.05)。结论:GADD45A调控端粒延长替代途径、保护端粒功能并促进骨肉瘤细胞增殖。
Abstract:
Objective: To investigate the effect of GADD45A on the proliferation and telomere regulation of osteosarcoma cells. Methods:Osteosarcoma cell U2OS was treated with siRNA and shRNA to observe changes in cell proliferation,telomere function,and alternative lengthening of telomeres in osteosarcoma cells. The mRNA level of GADD45A knockdown was detected by qPCR. The proliferation of osteosarcoma cells was detected by CCK-8 assay and clone formation assay. Changes in telomere function were detected by metaphase phase-fluorescence in situ hybridization. Immunofluorescence fluorescence in situ hybridization and C-circle assay were used to detect telomere damage and phenotypes associated with alternative telomere lengthening pathways. Results:qPCR results showed that compared with NC group,mRNA level decreased after siRNA knockdown of GADD45A(t=25.96,P<0.000 1). Compared with shscramble group,the mRNA level of GADD45A in shGADD45A-1 and shGADD45A-2 decreased(t=21.12,18.37,both P<0.000 1). The corresponding CCK-8(t=5.051,6.192,3.775,14.86,22.93,3.013,14.61,20.93,all P<0.05) and colony formation assay(t=46.68,23.73,24.98,all P<0.000 1) showed that deficiency of GADD45A inhibited the proliferation of osteosarcoma cells. The results of metaphase division phase fluorescence in situ hybridization showed that the loss of GADD45A could worsen the phenomenon of telomere multisignal(t=24.04,7.243,27.93,all P<0.01) and telomere signal loss(t=8.222,16.610,6.781,all P<0.01). The results of immunofluorescent-fluorescence in situ hybridization showed that the co-localization of γ-H2AX and PML with telomere increased after siRNA treatment of GADD45A(t=19.16,10.65,both P<0.000 1);shGADD45A-1 and shGADD45A-2 also confirmed the proportion of γ-H2AX,PML and telomere co-localization increased(t=14.71,24.03,16.69,18.10,all P<0.000 1). The results of C-circle assay showed that the level of C-circle in the outer telomere DNA circle increased among siGADD45A,shGADD45A-1 and shGADD45A-2 cell lines(t=41.27,14.06,4.539,all P<0.05). Conclusion:GADD45A regulates the alternative lengthening of telomere,protects telomere function and promotes the proliferation of osteosarcoma cells.

参考文献/References:

[1] BRARD C,PIPERNO-NEUMANN S,DELAYE J,et al. Sarcome-13/OS2016 trial protocol:a multicentre,randomised,open-label,phase Ⅱtrial of mifamurtide combined with postoperative chemotherapy for patients with newly diagnosed high-risk osteosarcoma[J]. BMJ Open,2019,9(5):e025877.
[2] OH J Y,KIM E H,LEE Y J,et al. Synergistic autophagy effect of mir-212-3p in zoledronic acid-treated in vitro and orthotopic in vivo models and in patient-derived osteosarcoma cells[J]. Cancers (Basel),2019,11(11):1812-1832.
[3] LOE T K,LI J S Z,ZHANG Y,et al. Telomere length heterogeneity in ALT cells is maintained by PML-dependent localization of the BTR complex to telomeres[J]. Genes Dev,2020,34(9/10):650-662.
[4] CHEN Y Y,DAGG R,ZHANG Y,et al. The C-circle biomarker is secreted by alternative-lengthening-of-telomeres positive cancer cells inside exosomes and provides a blood-based diagnostic for ALT activity[J]. Cancers (Basel),2021,13(21):5369-5392.
[5] SHENG G,GAO Y,YANG Y,et al. Osteosarcoma and metastasis[J]. Front Oncol,2021,11:780264.
[6] JANG H J,YANG J H,HONG E,et al. Chelidonine induces apoptosis via GADD45a-p53 regulation in human pancreatic cancer cells[J]. Integr Cancer Ther,2021,20:15347354211006191.
[7] DIAO D,WANG H,LI T,et al. Telomeric epigenetic response mediated by Gadd45a regulates stem cell aging and lifespan[J]. EMBO Rep,2018,19(10):e45494.
[8] ROSEMARY SIAFAKAS A,RICHARDSON D R. Growth arrest and DNA damage-45 alpha(GADD45alpha)[J]. Int J Biochem Cell Biol,2009,41(5):986-989.
[9] YUAN X,DAI M,XU D. Telomere-related markers for cancer[J]. Curr Top Med Chem,2020,20(6):410-432.
[10] WINGERT S,RIEGER M A. Terminal differentiation induction as DNA damage response in hematopoietic stem cells by GADD45A[J].Exp Hematol,2016,44(7):561-566.
[11] GONCALVES T,ZOUMPOULIDOU G,ALVAREZ-MENDOZA C,et al. Selective elimination of osteosarcoma cell lines with short telomeres by ataxia telangiectasia and Rad3-related inhibitors[J].ACS Pharmacol Transl Sci,2020,3(6):1253-1264.
[12] ZHANG J M,GENOIS M M,OUYANG J,et al. Alternative lengthening of telomeres is a self-perpetuating process in ALT-associated PML bodies[J]. Mol Cell,2021,81(5):1027-1042.
[13] YADAV T,ZHANG J M,OUYANG J,et al. TERRA and RAD51AP1 promote alternative lengthening of telomeres through an R- to D-loop switch [J]. Mol Cell,2022,82(21):3985-4000.
[14] SHI G,HU Y,ZHU X,et al. A critical role of telomere chromatin compaction in ALT tumor cell growth[J]. Nucleic Acids Res,2020,48(11):6019-6031.
[15] ZHANG J M,ZOU L. Alternative lengthening of telomeres:from molecular mechanisms to therapeutic outlooks[J]. Cell Biosci,2020, 10:30-38.
[16] DILLEY R L,VERMA P,CHO N W,et al. Break-induced telomere synthesis underlies alternative telomere maintenance[J]. Nature,2016,539(7627):54-58.
[17] SHEN M,YOUNG A,AUTEXIER C. PCNA,a focus on replication stress and the alternative lengthening of telomeres pathway[J]. DNA Repair(Amst),2021,100:103055.
[18] ZHANG J M,YADAV T,OUYANG J,et al. Alternative lengthening of telomeres through two distinct break-induced replication pathways [J]. Cell Rep,2019,26(4):955-968.
[19] ZHAN Q. Gadd45a,a p53- and BRCA1-regulated stress protein,in cellular response to DNA damage[J]. Mutat Res,2005,569(1/2):133-143.
[20] ARAB K,KARAULANOV E,MUSHEEV M,et al. GADD45A binds R-loops and recruits TET1 to CpG island promoters[J]. Nat Genet,2019,51(2):217-223.
[21] TOUBIANA S,SELIG S. Human subtelomeric DNA methylation:regulation and roles in telomere function[J]. Curr Opin Genet Dev,2020,60:9-16.
[22] EPISKOPOU H,DRASKOVIC I,VAN BENEDEN A,et al. Alternative lengthening of Telomeres is characterized by reduced compaction of telomeric chromatin[J]. Nucleic Acids Res,2014,42(7):4391-4405.
[23] PIETRASIK S,ZAJAC G,MORAWIEC J,et al. Interplay between BRCA1 and GADD45A and its potential for nucleotide excision repair in breast cancer pathogenesis[J]. Int J Mol Sci,2020,21(3):870-891.

相似文献/References:

[1]范亚茹,李瑞欣 综述,刘浩,等.用于癌症术后光热治疗与组织再生双功能支架的研究进展[J].天津医科大学学报,2022,28(06):687.

备注/Memo

备注/Memo:
作者简介 韩鑫宇(1998-),男,硕士在读,研究方向:医学遗传学;通信作者:王峰,E-mail:wangf@tmu.edu.cn。
更新日期/Last Update: 1900-01-01