[1] Schroder J, Fietz T, Kohler A, et al. Treatment and pattern of bone metastases in 1 094 patients with advanced breast cancer - Results from the prospective German Tumour Registry Breast Cancer cohort study[J]. Eur J Cancer, 2017,79:139
[2] 雷明星,刘耀升,刘蜀彬.骨转移瘤发病的细胞生物学机制与细胞分子靶向治疗[J].中华损伤与修复杂志: 电子版,2015,10(2):169
[3] Irelli A, Cocciolone V, Cannita K, et al. Bone targeted therapy for preventing skeletal-related events in metastatic breast cancer[J]. Bone, 2016,87:169
[4] Strazic-Geljic I, Guberovic I, Didak B, et al. Gallium, a promising candidate to disrupt the vicious cycle driving osteolytic metastases[J]. Biochem Pharmacol, 2016,116:11
[5] Early Breast Cancer Trialists’ Collaborative Group (EBCTCG). Adjuvant bisphosphonate treatment in early breast cancer: meta-analyses of individual patient data from randomisedtrials[J]. Lancet, 2015,386(10001):1353
[6] Hu M I, Glezerman I, Leboulleux S, et al. Denosumab for patients with persistent or relapsed hypercalcemia of malignancy despite recent bisphosphonate treatment[J]. J Natl Cancer Inst, 2013,105(18):1417
[7] Festuccia F, Jafari M T, Moioli A, et al. Safety and efficacy of denosumab in osteoporotic hemodialysedpatients[J]. J Nephrol, 2017, 30(2):271
[8] Sflomos G, Brisken C. A new Achilles Heel in breast cancer[J]. Oncotarget, 2013,4(8):1126
[9] Sledge G J, Toi M, Neven P, et al. MONARCH 2: Abemaciclib in Combination With Fulvestrant in Women With HR+/HER2- Advanced Breast Cancer Who Had Progressed While Receiving Endocrine Therapy[J]. J Clin Oncol, 2017,35(25):2875
[10] Suvannasankha A, Chirgwin J M. Role of bone-anabolic agents in the treatment of breast cancer bone metastases[J]. Breast Cancer Res, 2014, 16(6):484
[11] Milani A, Geuna E, Mittica G. Overcoming endocrine resistance in metastatic breast cancer: Current evidence and future directions[J]. World J Clin Oncol, 2014,5(5):990
[12] Pantano F, Iuliani M, Zoccoli A, et al. Emerging drugs for the treatment of bone metastasis[J]. Expert Opin Emerg Drugs, 2015, 20(4):637
[13] Xu J, Acharya S, Sahin O, et al. 14-3-3zeta turns TGF-beta's function from tumor suppressor to metastasis promoter in breast cancer by contextual changes of Smad partners from p53 to Gli2[J]. Cancer Cell, 2015,27(2):177
[14] Xu C, Wang Z, Cui R, et al. Co-expression of parathyroid hormone related protein and TGF-beta in breast cancer predicts poor survival outcome[J]. BMC Cancer, 2015,15:925
[15] Juarez P, Fournier P, Mohammad K S, et al. Halofuginone inhibits TGF-beta/BMP signaling and in combination with zoledronic acid enhances inhibition of breast cancer bone metastasis[J]. Oncotarget, 2017,8(49):86447
[16] Appel C K, Gallego-Pedersen S, Andersen L, et al. The Src family kinase inhibitor dasatinib delays pain-related behaviour and conserves bone in a rat model of cancer-induced bone pain[J]. Sci Rep, 2017,7(1):4792
[17] Li R, Zhang K, Penedo T L, et al. The RANK Pathway in Advanced Breast Cancer: Does Src Play a Role[J]. ApplImmunohistochem Mol Morphol, 2016,24(1):42
[18] De Felice M, Lambert D, Holen I, et al. Effects of Src-kinase inhibition in cancer-induced bone pain[J]. Mol Pain, 2016,12:1
[19] Mitri Z, Nanda R, Blackwell K, et al. TBCRC-010: Phase I/II Study of Dasatinib in Combination with Zoledronic Acid for the Treatment of Breast Cancer Bone Metastasis[J]. Clin Cancer Res, 2016, 22(23):5706
[20] Wu Z H, Lin C, Liu M M, et al. Src Inhibition Can Synergize with Gemcitabine and Reverse Resistance in Triple Negative Breast Cancer Cells via the AKT/c-Jun Pathway[J]. PLoS One, 2016,11(12): e169230
[21] Zheng L, Zhu K, Jiao H, et al. PTHrP expression in human MDA-MB-231 breast cancer cells is critical for tumor growth and survival and osteoblast inhibition[J]. Int J Biol Sci, 2013,9(8):830
[22] Kim W, Takyar F M, Swan K, et al. Calcium-Sensing Receptor Promotes Breast Cancer by Stimulating Intracrine Actions of Parathyroid Hormone-Related Protein[J]. Cancer Res, 2016,76(18): 5348
[23] Hsu Y L, Tsai E M, Hou M F, et al. Obtusifolin suppresses phthalate esters-induced breast cancer bone metastasis by targeting parathyroid hormone-related protein[J]. J Agric Food Chem, 2014, 62(49):11933
[24] Camirand A, Fadhil I, Luco A L, et al. Enhancement of taxol, doxorubicin and zoledronate anti-proliferation action on triple-negative breast cancer cells by a PTHrP blocking monoclonal antibody[J]. Am J Cancer Res, 2013,3(5):500
[25] Ross M H, Esser A K, Fox G C, et al. Bone-Induced Expression of Integrin beta3 Enables Targeted Nanotherapy of Breast Cancer Metastases[J]. Cancer Res, 2017,77(22):6299
[26] Li Y, Drabsch Y, Pujuguet P, et al. Genetic depletion and pharmacological targeting of alphav integrin in breast cancer cells impairs metastasis in zebrafish and mouse xenograft models[J]. Breast Cancer Res, 2015,17:28
[27] Kovacheva M, Zepp M, Berger S M, et al. Sustained conditional knockdown reveals intracellular bone sialoprotein as essential for breast cancer skeletal metastasis[J]. Oncotarget, 2014,5(14):5510
[28] Wang J, Wang L, Xia B, et al. BSP gene silencing inhibits migration, invasion, and bone metastasis of MDA-MB-231BO human breast cancer cells[J]. PLoS One, 2013,8(5):e62936
[29] Tauro M, Shay G, Sansil S S, et al. Bone-Seeking Matrix Metalloproteinase-2 Inhibitors Prevent Bone Metastatic Breast Cancer Growth[J]. Mol Cancer Ther, 2017,16(3):494
[30] Zheng W, Pollard J W. What DKK tates where to metastasize[J]. Nat Cell Biol, 2017,19(10):1146
[31] Zhou S J, Zhuo S R, Yang X Q, et al. Serum Dickkopf-1 expression level positively correlates with a poor prognosis in breast cancer[J]. DiagnPathol, 2014,9:161
[32] Mariz K, Ingolf J B, Daniel H, et al. The Wnt inhibitor dickkopf-1: a link between breast cancer and bone metastases[J]. Clin Exp Metastasis, 2015,32(8):857
[33] Gobel A, Browne A J, Thiele S, et al. Potentiated suppression of Dickkopf-1 in breast cancer by combined administration of the mevalonate pathway inhibitors zoledronic acid and statins[J]. Breast Cancer Res Treat, 2015,154(3):623
[34] Rachner T D, Gobel A, Benad-Mehner P, et al. Dickkopf-1 as a mediator and novel target in malignant bone disease[J]. Cancer Lett, 2014,346(2):172
[1]朱悦,张诗武,张丹芳,等.TA2小鼠自发乳腺癌血清蛋白质组学研究[J].天津医科大学学报,2013,19(05):373.
[2]刘 营,孙保存,刘铁菊,等.AURKA蛋白激酶在三阴乳腺癌干细胞形成血管拟态中的实验研究[J].天津医科大学学报,2013,19(06):437.
LIU Ying,SUN Bao-cun,LIU Tie-ju,et al.Experimental study of AURKA protein kinase in the formation of vascular mimicry in triple-negative breast cancer stem cells[J].Journal of Tianjin Medical University,2013,19(04):437.
[3]伦淑敏.HOXA5基因真核表达质粒的构建及在乳腺癌细胞中的功能研究[J].天津医科大学学报,2014,20(05):337.
LUN Shu-min. Construction of HOXA5 eukaryotic expression plasmid of and its biological significance in breast cancer cells[J].Journal of Tianjin Medical University,2014,20(04):337.
[4]伦淑敏.肌细胞增强因子2A基因真核表达质粒的构建及对乳腺癌细胞MCF-7增殖能力的影响[J].天津医科大学学报,2014,20(06):429.
LUN Shu-min.Construction of myocyte enhancer factor 2A eukaryotic expression plasmid and effects on cell proliferation in breast cancer cell line MCF7[J].Journal of Tianjin Medical University,2014,20(04):429.
[5]孙秀梅,张 飞,田 然,等.Nanog表达上调促进乳腺癌细胞MCF-7的增殖和侵袭[J].天津医科大学学报,2014,20(06):421.
SUN Xiu-mei,ZHANG Fei,TIAN Ran,et al.Up-regulation of Nanog promotes cell proliferation and invasion in breast cancer cells MCF-7[J].Journal of Tianjin Medical University,2014,20(04):421.
[6]张 洁,张 飞,冀 为,等. SHP2不同突变体对乳腺癌细胞的迁移和侵袭能力的影响[J].天津医科大学学报,2015,21(02):93.
ZHANG Jie,ZHANG Fei,JI Wei,et al. Effect of different SHP2 mutants on breast cancer cell migration and invasion[J].Journal of Tianjin Medical University,2015,21(04):93.
[7]蔡 隽. FOXQ1稳定表达乳腺癌细胞系的建立及鉴定[J].天津医科大学学报,2015,21(04):292.
CAI Jun.Establishment and identification of cell lines with stable expression of FOXQ1 in MDA-MB-231-luc[J].Journal of Tianjin Medical University,2015,21(04):292.
[8]季艳会,谭 建,张桂芝,等.全身广泛骨转移为首发症状的甲状腺微小乳头状癌1例[J].天津医科大学学报,2015,21(04):314.
[9]蔡 隽 综述,冯玉梅 审校.叉头框转录因子调控乳腺癌生物学特性的研究进展[J].天津医科大学学报,2015,21(05):455.
[10]任宗娜.沉默Notch4基因对乳腺癌细胞系MDA-MB-231增殖和迁移侵袭能力的影响[J].天津医科大学学报,2015,21(06):469.
REN Zong-na.Inhibition effect of?silencing?? Notch4 gene on the proliferation and migration and invasion activity of? breast cancer cell line?MDA-MB-231[J].Journal of Tianjin Medical University,2015,21(04):469.