|本期目录/Table of Contents|

[1]李鑫,韩继媛,李帆,等.乳腺癌eIF4E对免疫细胞浸润的影响及机制的初步研究[J].天津医科大学学报,2024,30(04):295-304.[doi:10.20135/j.issn.1006-8147.2024.04.0295]
 LI Xin,HAN Jiyuan,LI Fan,et al.Preliminary study on the effect of eIF4E on immune cell infiltration and mechanism in breast cancer[J].Journal of Tianjin Medical University,2024,30(04):295-304.[doi:10.20135/j.issn.1006-8147.2024.04.0295]
点击复制

乳腺癌eIF4E对免疫细胞浸润的影响及机制的初步研究(PDF)
分享到:

《天津医科大学学报》[ISSN:1006-8147/CN:12-1259/R]

卷:
30卷
期数:
2024年04期
页码:
295-304
栏目:
肿瘤疾病专题
出版日期:
2024-07-10

文章信息/Info

Title:
Preliminary study on the effect of eIF4E on immune cell infiltration and mechanism in breast cancer
文章编号:
1006-8147(2024)044-0295-10
作者:
李鑫韩继媛李帆习贵富游思頔张丹芳
(天津医科大学病理学教研室,天津300070)
Author(s):
LI XinHAN JiyuanLI FanXI GuifuYOU SidiZHANG Danfang
(Department of Pathology,Tianjin Medical University,Tianjin 300070,China)
关键词:
真核翻译起始因子4E乳腺癌免疫细胞浸润上皮-间充质转化
Keywords:
eIF4E breast cancer immune cell infiltration epithelial-mesenchymal transition
分类号:
R737.9
DOI:
10.20135/j.issn.1006-8147.2024.04.0295
文献标志码:
A
摘要:
目的:研究乳腺癌真核翻译起始因子4E(eIF4E)表达对免疫细胞浸润的影响及作用机制。方法:从癌症基因组图谱(TCGA)网站获取乳腺癌数据,分析eIF4E的表达与预后和临床特征的关系。通过TISIDB数据库分析乳腺癌eIF4E表达与免疫亚型及免疫细胞浸润的关系。通过单样本基因集富集分析对免疫细胞浸润和上皮-间充质转化(EMT)抑制基因集进行评分;分析eIF4E不同表达水平时免疫细胞浸润的差异以及EMT抑制基因集和免疫细胞浸润的相关性。蛋白免疫印迹和免疫荧光实验研究乳腺癌eIF4E表达对EMT相关蛋白表达的影响,Transwell实验研究eIF4E表达对乳腺癌细胞迁移和侵袭能力的影响。结果:eIF4E在乳腺癌淋巴细胞减少型(C4)中表达最高。乳腺癌中eIF4E高表达时抗肿瘤免疫细胞浸润减少(P<0.05),免疫抑制细胞浸润增多(P<0.05);同时eIF4E表达与EMT抑制基因集评分呈负相关(P<0.05),而EMT抑制基因集评分与许多抗肿瘤免疫细胞浸润呈正相关(均P<0.05)。免疫印迹结果显示,乳腺癌eIF4E高表达时EMT相关蛋白波形蛋白(Vimentin)的表达升高(t=11.83、5.927,均P<0.05),而E-钙黏蛋白(E-cadherin)表达降低(t=2.848、8.599,均P<0.05),免疫荧光实验得到了相同的结果(t=6.577、7.843、12.48、4.406,均P<0.05)。Transwell实验显示eIF4E的高表达增强了乳腺癌细胞迁移和侵袭能力(t=13.81、8.9、15.27、4.954,均P<0.05)。结论:乳腺癌eIF4E表达通过促进EMT来影响免疫细胞的浸润。
Abstract:
Objective: To study the effect of breast cancer eIF4E expression on immune cell infiltration and its mechanism of action. Methods:Breast cancer data were obtained from The Cancer Genome Atlas(TCGA) website to analyze the association of eIF4E expression with prognosis and clinical features. Breast cancer eIF4E expression was analyzed in relation to immune subtypes and immune cell infiltration by the TISIDB database.Immune cell infiltration and epithelial -mesenchymal transition(EMT) suppressor gene sets were scored by single-sample gene set enrichment analysis.The differences in immune cell infiltration at different expression levels of eIF4E,and the correlation between EMT suppressor gene sets and immune cell infiltration were analyzed.Protein immunoblotting and immunofluorescence experiments were performed to study the effect of eIF4E expression on EMT-related protein expression in breast cancer,and Transwell experiments were performed to study the effect of eIF4E expression on the migration and invasion ability of breast cancer cells. Results:The expression of eIF4E was highest in lymphopenic type(C4) of breast cancer. Antitumor immune cell infiltration was reduced(P<0.05) and immunosuppressive cell infiltration was increased(P<0.05) with high eIF4E expression in breast cancer.Meanwhile,eIF4E expression was negatively correlated with the EMT suppressor gene set score(P<0.05),whereas the EMT suppressor gene set score was positively correlated with the infiltration of many antitumor immune cells(all P<0.05).Immunoblotting results showed that the expression of EMT-associated protein Vimentin was increased in breast cancer with high expression of eIF4E(t=11.83, 5.927,both P<0.05),whereas the expression of E-cadherin was decreased(t=2.848,8.599,both P<0.05),and immunofluorescence experiments obtained the same results(t=6.577,7.843,12.48,4.406,all P<0.05). Transwell assay showed that high expression of eIF4E enhanced breast cancer cell migration and invasion(t=13.81,8.9,15.27,4.954,all P<0.05). Conclusion:The expression of breast cancer eIF4E influences immune cell infiltration by promoting EMT.

参考文献/References:

[1] SUNG H,FERLAY J,SIEGEL R L,et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA,2021,71(3): 209-249.
[2] GAO Y,SAMREEN N,HELLER S L. Non-BRCA early-onset bre-ast cancer in young women[J]. Radiographics,2022,42(1): 5-22.
[3] MAJIDPOOR J,MORTEZAEE K. The efficacy of PD-1/PD-L1 blo-ckade in cold cancers and future perspectives[J]. Clin Immunol (Orlando,Fla),2021,226: 108707.
[4] LI F,SUN H,YU Y,et al. RIPK1-dependent necroptosis promotes vasculogenic mimicry formation via eIF4E in triple-negative breast cancer[J]. Cell Death Dis,2023,14(5): 335.
[5] DONGRE A,WEINBERG R A. New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer[J]. Nat Rev Mol Cell Biol,2019,20(2): 69-84.
[6] SUN X,WANG M,WANG M,et al. Exploring the metabolic vulne-rabilities of epithelial-mesenchymal transition in breast cancer[J]. Front Cell Dev Biol,2020,8: 655.
[7] JIANG Y,ZHAN H. Communication between EMT and PD-L1 si-gnaling: new insights into tumor immune evasion[J]. Cancer Lett,2020,468: 72-81.
[8] TAKI M,ABIKO K,UKITA M,et al. Tumor immune microenviro-nment during epithelial-mesenchymal transition[J]. Clin Cancer Res,2021,27(17): 4669-4679.
[9] GONZ?魣LEZ-MART?魱NEZ S,P?魪REZ-MIES B,PIZARRO D,et al. Epi-thelial mesenchymal transition and immune response in metaplastic breast carcinoma[J]. Int J Mol Sci,2021,22(14): 7398.
[10] CAI J,CUI Y,YANG J,et al. Epithelial-mesenchymal transition: when tumor cells meet myeloid-derived suppressor cells[J]. Biochim Biophys Acta Rev Cancer,2021,1876(1): 188564.
[11] DENKERT C,VON MINCKWITZ G,DARB-ESFAHANI S,et al. Tumour-infiltrating lymphocytes and prognosis in different subtypes of breast cancer: a pooled analysis of 3771 patients treated with neoadjuvant therapy[J]. Lancet Oncol,2018,19(1): 40-50.
[12] NAMBIAR D K,AGUILERA T,CAO H,et al. Galectin-1-driven T cell exclusion in the tumor endothelium promotes immunotherapy resistance[J]. J Clin Invest,2019,129(12): 5553-5567.
[13] DE CHAISEMARTIN L,GOC J,DAMOTTE D,et al. Characteri-zation of chemokines and adhesion molecules associated with T cell presence in tertiary lymphoid structures in human lung cancer[J]. Cancer Res,2011,71(20): 6391-6399.
[14] LI S,CHEN J S,LI X,et al. MNK,mTOR or eIF4E-selecting the best anti-tumor target for blocking translation initiation[J]. Eur J Med Chem,2023,260: 115781.
[15] CEREZO M,GUEMIRI R,DRUILLENNEC S,et al. Translational control of tumor immune escape via the eIF4F-STAT1-PD-L1 axis in melanoma[J]. Nature Med,2018,24(12): 1877-1886.
[16] HASHIMOTO S,FURUKAWA S,HASHIMOTO A,et al. ARF6 and AMAP1 are major targets of KRAS and TP53 mutations to promote invasion,PD-L1 dynamics,and immune evasion of pancreatic cancer[J]. Proc Natl Acad Sci U S A,2019,116(35): 17450-17459.
[17] BRINA D,PONZONI A,TROIANI M,et al. The Akt/mTOR and MNK/eIF4E pathways rewire the prostate cancer translatome to secrete HGF,SPP1 and BGN and recruit suppressive myeloid cells[J]. Nature Cancer,2023,4(8): 1102-1121.
[18] GUO Q,BARTISH M,GON?覶ALVES C,et al. The MNK1/2-eIF4E axis supports immune suppression and metastasis in postpartum breast cancer[J]. Cancer Res,2021,81(14): 3876-3889.
[19] HU Q,HONG Y,QI P,et al. Atlas of breast cancer infiltrated B-lymphocytes revealed by paired single-cell RNA-sequencing and antigen receptor profiling[J]. Nat Commun,2021,12(1): 2186.
[20] NHAM T,POZNANSKI S M,FAN I Y,et al. Ex vivo-expanded natural killer cells derived from long-term cryopreserved cord blood are cytotoxic against primary breast cancer cells[J]. J Immunother,2018,41(2): 64-72.
[21] SINGH S,CHAKRABARTI R. Consequences of EMT-driven cha-nges in the immune microenvironment of breast cancer and therapeutic response of cancer cells[J]. J Clin Med,2019,8(5): 642.
[22] ERIN N,GRAHOVAC J,BROZOVIC A,et al. Tumor microenviron-ment and epithelial mesenchymal transition as targets to overcome tumor multidrug resistance[J]. Drug Resist Updat,2020,53:100715.
[23] ZHANG Q,ZHANG Y,CHEN Y,et al. A novel mTORC1/2 inhibitor (MTI-31) inhibits tumor growth,epithelial-mesenchymal transi-tion,metastases,and improves antitumor immunity in preclinical models of lung cancer[J]. Clin Cancer Res,2019,25(12):3630-3642.
[24] PAOLILLO M,SCHINELLI S. Extracellular matrix alterations in metastatic processes[J]. Int J Mol Sci,2019,20(19): 4974.
[25] YOSHIDA T,OZAWA Y,KIMURA T,et al. Eribulin mesilate sup-presses experimental metastasis of breast cancer cells by reversing phenotype from epithelial-mesenchymal transition(EMT) to me-senchymal-epithelial transition (MET) states[J]. Br J Cancer,2014, 110(6): 1497-1505.
[26] HE J,CHEN S,YU T,et al. Harmine suppresses breast cancer cell migration and invasion by regulating TAZ-mediated epithelial-mesenchymal transition[J]. Am J Cancer Res,2022,12(6): 2612-2626.
[27] ZHENG Y,JIA H,WANG P,et al. Silencing TRAIP suppresses cell proliferation and migration/invasion of triple negative breast cancer via RB-E2F signaling and EMT[J]. Cancer Gene Ther,2023,30(1): 74-84.
[28] TSOI H,YOU C P,LEUNG M H,et al. Targeting ribosome bio-genesis to combat tamoxifen resistance in ER+ve breast cancer[J]. Cancers (Basel),2022,14(5):1251.

相似文献/References:

[1]朱悦,张诗武,张丹芳,等.TA2小鼠自发乳腺癌血清蛋白质组学研究[J].天津医科大学学报,2013,19(05):373.
[2]刘 营,孙保存,刘铁菊,等.AURKA蛋白激酶在三阴乳腺癌干细胞形成血管拟态中的实验研究[J].天津医科大学学报,2013,19(06):437.
 LIU Ying,SUN Bao-cun,LIU Tie-ju,et al.Experimental study of AURKA protein kinase in the formation of vascular mimicry in triple-negative breast cancer stem cells[J].Journal of Tianjin Medical University,2013,19(04):437.
[3]伦淑敏.HOXA5基因真核表达质粒的构建及在乳腺癌细胞中的功能研究[J].天津医科大学学报,2014,20(05):337.
 LUN Shu-min. Construction of HOXA5 eukaryotic expression plasmid of and its biological significance in breast cancer cells[J].Journal of Tianjin Medical University,2014,20(04):337.
[4]伦淑敏.肌细胞增强因子2A基因真核表达质粒的构建及对乳腺癌细胞MCF-7增殖能力的影响[J].天津医科大学学报,2014,20(06):429.
 LUN Shu-min.Construction of myocyte enhancer factor 2A eukaryotic expression plasmid and effects on cell proliferation in breast cancer cell line MCF7[J].Journal of Tianjin Medical University,2014,20(04):429.
[5]孙秀梅,张 飞,田 然,等.Nanog表达上调促进乳腺癌细胞MCF-7的增殖和侵袭[J].天津医科大学学报,2014,20(06):421.
 SUN Xiu-mei,ZHANG Fei,TIAN Ran,et al.Up-regulation of Nanog promotes cell proliferation and invasion in breast cancer cells MCF-7[J].Journal of Tianjin Medical University,2014,20(04):421.
[6]张 洁,张 飞,冀 为,等. SHP2不同突变体对乳腺癌细胞的迁移和侵袭能力的影响[J].天津医科大学学报,2015,21(02):93.
 ZHANG Jie,ZHANG Fei,JI Wei,et al. Effect of different SHP2 mutants on breast cancer cell migration and invasion[J].Journal of Tianjin Medical University,2015,21(04):93.
[7]蔡 隽. FOXQ1稳定表达乳腺癌细胞系的建立及鉴定[J].天津医科大学学报,2015,21(04):292.
 CAI Jun.Establishment and identification of cell lines with stable expression of FOXQ1 in MDA-MB-231-luc[J].Journal of Tianjin Medical University,2015,21(04):292.
[8]蔡 隽 综述,冯玉梅 审校.叉头框转录因子调控乳腺癌生物学特性的研究进展[J].天津医科大学学报,2015,21(05):455.
[9]任宗娜.沉默Notch4基因对乳腺癌细胞系MDA-MB-231增殖和迁移侵袭能力的影响[J].天津医科大学学报,2015,21(06):469.
 REN Zong-na.Inhibition effect of?silencing?? Notch4 gene on the proliferation and migration and invasion activity of? breast cancer cell line?MDA-MB-231[J].Journal of Tianjin Medical University,2015,21(04):469.
[10]周岩,宋伟杰,张飞,等.人附睾蛋白4在乳腺癌发生发展中的机制研究[J].天津医科大学学报,2015,21(06):466.
 ZHOU Yan,SONG Wei-jie,ZHANG Fei,et al.Mechanism of human epididymis protein 4 in development and progression of breast cancer[J].Journal of Tianjin Medical University,2015,21(04):466.

备注/Memo

备注/Memo:
基金项目:天津市教委科研计划项目(2020KJ198)
作者简介:李鑫(1999-),女,硕士在读,研究方向:病理学;
通信作者:张丹芳,E-mail: zhangdf@tmu.edu.cn。
更新日期/Last Update: 2024-07-10