[1] SUNG H,FERLAY J,SIEGEL R L,et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA,2021,71(3): 209-249.
[2] GAO Y,SAMREEN N,HELLER S L. Non-BRCA early-onset bre-ast cancer in young women[J]. Radiographics,2022,42(1): 5-22.
[3] MAJIDPOOR J,MORTEZAEE K. The efficacy of PD-1/PD-L1 blo-ckade in cold cancers and future perspectives[J]. Clin Immunol (Orlando,Fla),2021,226: 108707.
[4] LI F,SUN H,YU Y,et al. RIPK1-dependent necroptosis promotes vasculogenic mimicry formation via eIF4E in triple-negative breast cancer[J]. Cell Death Dis,2023,14(5): 335.
[5] DONGRE A,WEINBERG R A. New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer[J]. Nat Rev Mol Cell Biol,2019,20(2): 69-84.
[6] SUN X,WANG M,WANG M,et al. Exploring the metabolic vulne-rabilities of epithelial-mesenchymal transition in breast cancer[J]. Front Cell Dev Biol,2020,8: 655.
[7] JIANG Y,ZHAN H. Communication between EMT and PD-L1 si-gnaling: new insights into tumor immune evasion[J]. Cancer Lett,2020,468: 72-81.
[8] TAKI M,ABIKO K,UKITA M,et al. Tumor immune microenviro-nment during epithelial-mesenchymal transition[J]. Clin Cancer Res,2021,27(17): 4669-4679.
[9] GONZ?魣LEZ-MART?魱NEZ S,P?魪REZ-MIES B,PIZARRO D,et al. Epi-thelial mesenchymal transition and immune response in metaplastic breast carcinoma[J]. Int J Mol Sci,2021,22(14): 7398.
[10] CAI J,CUI Y,YANG J,et al. Epithelial-mesenchymal transition: when tumor cells meet myeloid-derived suppressor cells[J]. Biochim Biophys Acta Rev Cancer,2021,1876(1): 188564.
[11] DENKERT C,VON MINCKWITZ G,DARB-ESFAHANI S,et al. Tumour-infiltrating lymphocytes and prognosis in different subtypes of breast cancer: a pooled analysis of 3771 patients treated with neoadjuvant therapy[J]. Lancet Oncol,2018,19(1): 40-50.
[12] NAMBIAR D K,AGUILERA T,CAO H,et al. Galectin-1-driven T cell exclusion in the tumor endothelium promotes immunotherapy resistance[J]. J Clin Invest,2019,129(12): 5553-5567.
[13] DE CHAISEMARTIN L,GOC J,DAMOTTE D,et al. Characteri-zation of chemokines and adhesion molecules associated with T cell presence in tertiary lymphoid structures in human lung cancer[J]. Cancer Res,2011,71(20): 6391-6399.
[14] LI S,CHEN J S,LI X,et al. MNK,mTOR or eIF4E-selecting the best anti-tumor target for blocking translation initiation[J]. Eur J Med Chem,2023,260: 115781.
[15] CEREZO M,GUEMIRI R,DRUILLENNEC S,et al. Translational control of tumor immune escape via the eIF4F-STAT1-PD-L1 axis in melanoma[J]. Nature Med,2018,24(12): 1877-1886.
[16] HASHIMOTO S,FURUKAWA S,HASHIMOTO A,et al. ARF6 and AMAP1 are major targets of KRAS and TP53 mutations to promote invasion,PD-L1 dynamics,and immune evasion of pancreatic cancer[J]. Proc Natl Acad Sci U S A,2019,116(35): 17450-17459.
[17] BRINA D,PONZONI A,TROIANI M,et al. The Akt/mTOR and MNK/eIF4E pathways rewire the prostate cancer translatome to secrete HGF,SPP1 and BGN and recruit suppressive myeloid cells[J]. Nature Cancer,2023,4(8): 1102-1121.
[18] GUO Q,BARTISH M,GON?覶ALVES C,et al. The MNK1/2-eIF4E axis supports immune suppression and metastasis in postpartum breast cancer[J]. Cancer Res,2021,81(14): 3876-3889.
[19] HU Q,HONG Y,QI P,et al. Atlas of breast cancer infiltrated B-lymphocytes revealed by paired single-cell RNA-sequencing and antigen receptor profiling[J]. Nat Commun,2021,12(1): 2186.
[20] NHAM T,POZNANSKI S M,FAN I Y,et al. Ex vivo-expanded natural killer cells derived from long-term cryopreserved cord blood are cytotoxic against primary breast cancer cells[J]. J Immunother,2018,41(2): 64-72.
[21] SINGH S,CHAKRABARTI R. Consequences of EMT-driven cha-nges in the immune microenvironment of breast cancer and therapeutic response of cancer cells[J]. J Clin Med,2019,8(5): 642.
[22] ERIN N,GRAHOVAC J,BROZOVIC A,et al. Tumor microenviron-ment and epithelial mesenchymal transition as targets to overcome tumor multidrug resistance[J]. Drug Resist Updat,2020,53:100715.
[23] ZHANG Q,ZHANG Y,CHEN Y,et al. A novel mTORC1/2 inhibitor (MTI-31) inhibits tumor growth,epithelial-mesenchymal transi-tion,metastases,and improves antitumor immunity in preclinical models of lung cancer[J]. Clin Cancer Res,2019,25(12):3630-3642.
[24] PAOLILLO M,SCHINELLI S. Extracellular matrix alterations in metastatic processes[J]. Int J Mol Sci,2019,20(19): 4974.
[25] YOSHIDA T,OZAWA Y,KIMURA T,et al. Eribulin mesilate sup-presses experimental metastasis of breast cancer cells by reversing phenotype from epithelial-mesenchymal transition(EMT) to me-senchymal-epithelial transition (MET) states[J]. Br J Cancer,2014, 110(6): 1497-1505.
[26] HE J,CHEN S,YU T,et al. Harmine suppresses breast cancer cell migration and invasion by regulating TAZ-mediated epithelial-mesenchymal transition[J]. Am J Cancer Res,2022,12(6): 2612-2626.
[27] ZHENG Y,JIA H,WANG P,et al. Silencing TRAIP suppresses cell proliferation and migration/invasion of triple negative breast cancer via RB-E2F signaling and EMT[J]. Cancer Gene Ther,2023,30(1): 74-84.
[28] TSOI H,YOU C P,LEUNG M H,et al. Targeting ribosome bio-genesis to combat tamoxifen resistance in ER+ve breast cancer[J]. Cancers (Basel),2022,14(5):1251.
[1]朱悦,张诗武,张丹芳,等.TA2小鼠自发乳腺癌血清蛋白质组学研究[J].天津医科大学学报,2013,19(05):373.
[2]刘 营,孙保存,刘铁菊,等.AURKA蛋白激酶在三阴乳腺癌干细胞形成血管拟态中的实验研究[J].天津医科大学学报,2013,19(06):437.
LIU Ying,SUN Bao-cun,LIU Tie-ju,et al.Experimental study of AURKA protein kinase in the formation of vascular mimicry in triple-negative breast cancer stem cells[J].Journal of Tianjin Medical University,2013,19(04):437.
[3]伦淑敏.HOXA5基因真核表达质粒的构建及在乳腺癌细胞中的功能研究[J].天津医科大学学报,2014,20(05):337.
LUN Shu-min. Construction of HOXA5 eukaryotic expression plasmid of and its biological significance in breast cancer cells[J].Journal of Tianjin Medical University,2014,20(04):337.
[4]伦淑敏.肌细胞增强因子2A基因真核表达质粒的构建及对乳腺癌细胞MCF-7增殖能力的影响[J].天津医科大学学报,2014,20(06):429.
LUN Shu-min.Construction of myocyte enhancer factor 2A eukaryotic expression plasmid and effects on cell proliferation in breast cancer cell line MCF7[J].Journal of Tianjin Medical University,2014,20(04):429.
[5]孙秀梅,张 飞,田 然,等.Nanog表达上调促进乳腺癌细胞MCF-7的增殖和侵袭[J].天津医科大学学报,2014,20(06):421.
SUN Xiu-mei,ZHANG Fei,TIAN Ran,et al.Up-regulation of Nanog promotes cell proliferation and invasion in breast cancer cells MCF-7[J].Journal of Tianjin Medical University,2014,20(04):421.
[6]张 洁,张 飞,冀 为,等. SHP2不同突变体对乳腺癌细胞的迁移和侵袭能力的影响[J].天津医科大学学报,2015,21(02):93.
ZHANG Jie,ZHANG Fei,JI Wei,et al. Effect of different SHP2 mutants on breast cancer cell migration and invasion[J].Journal of Tianjin Medical University,2015,21(04):93.
[7]蔡 隽. FOXQ1稳定表达乳腺癌细胞系的建立及鉴定[J].天津医科大学学报,2015,21(04):292.
CAI Jun.Establishment and identification of cell lines with stable expression of FOXQ1 in MDA-MB-231-luc[J].Journal of Tianjin Medical University,2015,21(04):292.
[8]蔡 隽 综述,冯玉梅 审校.叉头框转录因子调控乳腺癌生物学特性的研究进展[J].天津医科大学学报,2015,21(05):455.
[9]任宗娜.沉默Notch4基因对乳腺癌细胞系MDA-MB-231增殖和迁移侵袭能力的影响[J].天津医科大学学报,2015,21(06):469.
REN Zong-na.Inhibition effect of?silencing?? Notch4 gene on the proliferation and migration and invasion activity of? breast cancer cell line?MDA-MB-231[J].Journal of Tianjin Medical University,2015,21(04):469.
[10]周岩,宋伟杰,张飞,等.人附睾蛋白4在乳腺癌发生发展中的机制研究[J].天津医科大学学报,2015,21(06):466.
ZHOU Yan,SONG Wei-jie,ZHANG Fei,et al.Mechanism of human epididymis protein 4 in development and progression of breast cancer[J].Journal of Tianjin Medical University,2015,21(04):466.