[1] QUAIL D F,JOYCE J A. Microenvironmental regulation of tumor progression and metastasis [J]. Nat Med,2013,19(11): 1423-1437.
[2] HU D,LI Z,ZHENG B,et al. Cancer-associated fibroblasts in breast cancer: challenges and opportunities[J]. Cancer Commun (Lond),2022,42(5): 401-434.
[3] DELINASSIOS J G,HOFFMAN R M. The cancer-inhibitory effects of proliferating tumor-residing fibroblasts[J]. Biochim Biophys Acta Rev Cancer,2022,1877(1): 188673.
[4] BARTOSCHEK M,OSKOLKOV N,BOCCI M,et al. Spatially and functionally distinct subclasses of breast cancer-associated fibroblasts revealed by single cell RNA sequencing[J]. Nat Commun,2018, 9(1): 5150.
[5] CORDS L,TIETSCHER S,ANZENEDER T,et al. Cancer-associated fibroblast classification in single-cell and spatial proteomics data [J]. Nat Commun,2023,14(1): 4294.
[6] YAZDANI S,BANSAL R,PRAKASH J. Drug targeting to myofibroblasts: implications for fibrosis and cancer[J]. Adv Drug Deliv Rev,2017,121: 101-116.
[7] SAHAI E,ASTSATUROV I,CUKIERMAN E,et al. A framework for advancing our understanding of cancer-associated fibroblasts[J]. Nat Rev Cancer,2020,20(3): 174-186.
[8] TSCHUMPERLIN D J,LAGARES D. Mechano-therapeutics: targeting mechanical signaling in fibrosis and tumor stroma[J]. Pharmacol Ther,2020,212: 107575.
[9] CHHABRA Y,WEERARATNA A T. Fibroblasts in cancer: unity in heterogeneity[J]. Cell,2023,186(8): 1580-1609.
[10] LI X,SUN Z,PENG G,et al. Single-cell RNA sequencing reveals a pro-invasive cancer-associated fibroblast subgroup associated with poor clinical outcomes in patients with gastric cancer[J]. Theranostics,2022,12(2): 620-638.
[11] BARTOSCHEK M,OSKOLKOV N,BOCCI M,et al. Spatially and functionally distinct subclasses of breast cancer-associated fibroblasts revealed by single cell RNA sequencing[J]. Nat Commun,2018, 9(1): 5150.
[12] SU S,CHEN J,YAO H,et al. CD10(+)GPR77(+) cancer-associated fibroblasts promote cancer formation and chemoresistance by sustaining cancer stemness[J]. Cell,2018,172(4): 841-856.
[13] HUELSKEN J,HANAHAN D. A subset of cancer-associated fibroblasts determines therapy resistance[J]. Cell,2018,172(4): 643-644.
[14] GASCARD P,TLSTY T D. Carcinoma-associated fibroblasts: orchestrating the composition of malignancy[J]. Genes Dev,2016, 30(9): 1002-1019.
[15] WANG H,LI N,LIU Q,et al. Antiandrogen treatment induces stromal cell reprogramming to promote castration resistance in prostate cancer[J]. Cancer Cell,2023,41(7): 1345-1362.
[16] BARLOW C,HIROTSUNE S,PAYLOR R,et al. Atm-deficient mice: a paradigm of ataxia telangiectasia[J]. Cell,1996,86(1): 159-171.
[17] KAY E J,PATERSON K,RIERA-DOMINGO C,et al. Cancer-associated fibroblasts require proline synthesis by PYCR1 for the deposition of pro-tumorigenic extracellular matrix[J]. Nat Metab,2022, 4(6): 693-710.
[18] ZAGHDOUDI S,DECAUP E,BELHABIB I,et al. FAK activity in cancer-associated fibroblasts is a prognostic marker and a druggable key metastatic player in pancreatic cancer[J]. EMBO Mol Med,2020, 12(11): e12010.
[19] GEGOTEK A,JAROCKA-KARPOWICZ I,SKRZYDLEWSKA E. Cytoprotective effect of ascorbic acid and rutin against oxidative changes in the proteome of skin fibroblasts cultured in a three-dimensional system[J]. Nutrients,2020,12(4):1074.
[20] GEGOTEK A,BIELAWSKA K,BIERNACKI M,et al. Comparison of protective effect of ascorbic acid on redox and endocannabinoid systems interactions in in vitro cultured human skin fibroblasts exposed to UV radiation and hydrogen peroxide[J]. Arch Dermatol Res,2017,309(4): 285-303.
[21] MAEDA J,ALLUM A J,MUSSALLEM J T,et al. Ascorbic acid 2-glucoside pretreatment protects cells from ionizing radiation,UVC,and short wave length of UVB[J]. Genes (Basel),2020,11(3):238.
[22] KILBERG M S,SHAN J,SU N. ATF4-dependent transcription mediates signaling of amino acid limitation[J]. Trends Endocrinol Metab,2009,20(9): 436-443.
[23] SCALISE M,POCHINI L,CONSOLE L,et al. The Human SLC1A5 (ASCT2) amino acid transporter: from function to structure and role in cell biology[J]. Front Cell Dev Biol,2018,6: 96.
[24] ELYADA E,BOLISETTY M,LAISE P,et al. Cross-species single-cell analysis of pancreatic ductal adenocarcinoma reveals antigen-presenting cancer-associated fibroblasts[J]. Cancer Discov,2019,9(8): 1102-1123.
[25] CHEN Z,ZHOU L,LIU L,et al. Single-cell RNA sequencing highlights the role of inflammatory cancer-associated fibroblasts in bladder urothelial carcinoma[J]. Nat Commun,2020,11(1): 5077.
[26] COSTA A,KIEFFER Y,SCHOLER-DAHIREL A,et al. Fibroblast heterogeneity and immunosuppressive environment in human breast cancer[J]. Cancer Cell,2018,33(3): 463-479.
[27] OHLUND D,HANDLY-SANTANA A,BIFFI G,et al. Distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic cancer[J]. J Exp Med,2017,214(3): 579-596.
[28] WU S Z,RODEN D L,WANG C,et al. Stromal cell diversity associated with immune evasion in human triple-negative breast cancer[J]. EMBO J,2020,39(19): e104063.
[1]朱悦,张诗武,张丹芳,等.TA2小鼠自发乳腺癌血清蛋白质组学研究[J].天津医科大学学报,2013,19(05):373.
[2]刘 营,孙保存,刘铁菊,等.AURKA蛋白激酶在三阴乳腺癌干细胞形成血管拟态中的实验研究[J].天津医科大学学报,2013,19(06):437.
LIU Ying,SUN Bao-cun,LIU Tie-ju,et al.Experimental study of AURKA protein kinase in the formation of vascular mimicry in triple-negative breast cancer stem cells[J].Journal of Tianjin Medical University,2013,19(04):437.
[3]伦淑敏.HOXA5基因真核表达质粒的构建及在乳腺癌细胞中的功能研究[J].天津医科大学学报,2014,20(05):337.
LUN Shu-min. Construction of HOXA5 eukaryotic expression plasmid of and its biological significance in breast cancer cells[J].Journal of Tianjin Medical University,2014,20(04):337.
[4]伦淑敏.肌细胞增强因子2A基因真核表达质粒的构建及对乳腺癌细胞MCF-7增殖能力的影响[J].天津医科大学学报,2014,20(06):429.
LUN Shu-min.Construction of myocyte enhancer factor 2A eukaryotic expression plasmid and effects on cell proliferation in breast cancer cell line MCF7[J].Journal of Tianjin Medical University,2014,20(04):429.
[5]孙秀梅,张 飞,田 然,等.Nanog表达上调促进乳腺癌细胞MCF-7的增殖和侵袭[J].天津医科大学学报,2014,20(06):421.
SUN Xiu-mei,ZHANG Fei,TIAN Ran,et al.Up-regulation of Nanog promotes cell proliferation and invasion in breast cancer cells MCF-7[J].Journal of Tianjin Medical University,2014,20(04):421.
[6]张 洁,张 飞,冀 为,等. SHP2不同突变体对乳腺癌细胞的迁移和侵袭能力的影响[J].天津医科大学学报,2015,21(02):93.
ZHANG Jie,ZHANG Fei,JI Wei,et al. Effect of different SHP2 mutants on breast cancer cell migration and invasion[J].Journal of Tianjin Medical University,2015,21(04):93.
[7]蔡 隽. FOXQ1稳定表达乳腺癌细胞系的建立及鉴定[J].天津医科大学学报,2015,21(04):292.
CAI Jun.Establishment and identification of cell lines with stable expression of FOXQ1 in MDA-MB-231-luc[J].Journal of Tianjin Medical University,2015,21(04):292.
[8]蔡 隽 综述,冯玉梅 审校.叉头框转录因子调控乳腺癌生物学特性的研究进展[J].天津医科大学学报,2015,21(05):455.
[9]任宗娜.沉默Notch4基因对乳腺癌细胞系MDA-MB-231增殖和迁移侵袭能力的影响[J].天津医科大学学报,2015,21(06):469.
REN Zong-na.Inhibition effect of?silencing?? Notch4 gene on the proliferation and migration and invasion activity of? breast cancer cell line?MDA-MB-231[J].Journal of Tianjin Medical University,2015,21(04):469.
[10]周岩,宋伟杰,张飞,等.人附睾蛋白4在乳腺癌发生发展中的机制研究[J].天津医科大学学报,2015,21(06):466.
ZHOU Yan,SONG Wei-jie,ZHANG Fei,et al.Mechanism of human epididymis protein 4 in development and progression of breast cancer[J].Journal of Tianjin Medical University,2015,21(04):466.