|本期目录/Table of Contents|

[1]牛 琛,付 丽.乳腺癌转移演进的关键分子ALDH2体外可视化研究[J].天津医科大学学报,2024,30(01):23-28.[doi:10.20135/j.issn.1006-8147.2024.01.0023]
 NIU Chen,FU Li.In vitro visualization of ALDH2, a key molecule in the evolution of breast cancer metastasis[J].Journal of Tianjin Medical University,2024,30(01):23-28.[doi:10.20135/j.issn.1006-8147.2024.01.0023]
点击复制

乳腺癌转移演进的关键分子ALDH2体外可视化研究(PDF)
分享到:

《天津医科大学学报》[ISSN:1006-8147/CN:12-1259/R]

卷:
30卷
期数:
2024年01期
页码:
23-28
栏目:
基础医学
出版日期:
2024-01-01

文章信息/Info

Title:
In vitro visualization of ALDH2, a key molecule in the evolution of breast cancer metastasis
文章编号:
1006-8147(2024)01-0023-06
作者:
牛 琛付 丽
(天津医科大学肿瘤医院乳腺病理科,国家肿瘤临床医学研究中心,天津 300060)
Author(s):
NIU ChenFU Li
(Department of Breast Cancer Pathology,Tianjin Medical University Cancer Institute and Hospital,National Clinical Medical Research Center for Tumors,Tianjin 300060,China)
关键词:
乳腺癌乙醛脱氢酶2近红外荧光成像可视化
Keywords:
breast canceracetaldehyde dehydrogenase 2NIR-fluorescence imagingvisualization
分类号:
R737.9
DOI:
10.20135/j.issn.1006-8147.2024.01.0023
文献标志码:
A
摘要:
目的:分析乙醛脱氢酶2(ALDH2)靶向脂质体纳米探针ALDH2-Cy7@LP-FA在细胞水平的成像能力和靶向性能。方法:研究制备荧光探针ALDH2-Cy7@LP-FA,通过粒径分析、紫外吸收和荧光发射光谱对其进行表征。利用Western 印迹和免疫组化检测ALDH2在乳腺癌组织和细胞系的表达情况。以ALDH2高表达的乳腺癌细胞BT474、MDA-MB-231作为实验组,ALDH2低表达的MCF-10A作为对照组,通过流式细胞术及共聚焦荧光显微镜,观察探针的亚细胞器共定位及成像效果。采用CCK8法分析探针的细胞毒性和生物相容性,为体内成像提供实验依据。结果:脂质体探针ALDH2-Cy7@LP-FA粒径均一分布[(155±2) nm],脂质体的包载使得标记抗体的紫外吸收和荧光发射分别发生了4 nm和5 nm的蓝移,脂质体的包载实现了抗体纳米化。ALDH2蛋白在BT474细胞系中表达最高,在MCF-10A表达最低(t=29.123,P<0.001)。体外摄取及成像效果显示,ALDH2-Cy7@LP-FA可特异性靶向线粒体中的ALDH2,对BT474细胞的结合亲和力高于231细胞,对MCF-10A的结合最低,具有选择性结合ALDH2高表达癌细胞的能力(BT474:t=9.976,P<0.01;MDA-MB-231:t=12.026,P<0.05)。CCK8实验结果表明探针毒性极低,具有良好的生物相容性。结论:ALDH2在高转移乳腺癌细胞和组织中高表达,是识别转移细胞的关键分子,通过ALDH2-Cy7@LP-FA靶向ALDH2分子成像,可实现精准定位肿瘤边界。
Abstract:
Objective: To analyze the imaging ability and targeting performance of acetaldehyde dehydrogenase 2(ALDH2) -targeted liposomal nanoprobe ALDH2-Cy7@LP-FA in the cellular level. Methods: The fluorescent probe ALDH2-Cy7@LP-FA was prepared and characterized by particle size analysis, UV absorption and fluorescence emission spectroscopy. Western blotting and immunohistoche-mistry were used to detect the expression of ALDH2 in different breast cancer tissues and cell lines. Breast cancer cells BT474 and MDA-MB-231 with high ALDH2 expression were used as the experimental group, and MCF-10A with low ALDH2 expression was used as the control group and the subcellular organelle co-localization and imaging effect of the probes were observed by flow cytometry and confocal fluorescence microscopy. The cytotoxicity and biocompatibility of the probes were analyzed by CCK8 method to provide experimental basis for in vivo imaging. Results: The particle size of the liposomal probe ALDH2-Cy7@LP-FA was uniformly distributed [(155±2) nm], and the liposome encapsulation resulted in a blue shift of 4 nm and 5 nm in the UV absorption and fluorescence emission of the labeled antibody, respectively, and the liposome encapsulation realized the nanosizing of the antibody. The protein expression of ALDH2 was the highest in BT474 cell line, and the expression in MCF-10A was extremely low(t=29.123, P<0.001). In vitro uptake and imaging showed that ALDH2-Cy7@LP-FA could specifically target ALDH2 in mitochondria, with higher binding affinity to BT474 cells than to 231 cells, and the lowest binding to MCF-10A, with the ability to selectively bind to ALDH2 high-expressing cancer cells (BT474: t=9.976, P<0.01; MDA-MB-231: t=12.026,P<0.05). The results of CCK8 experiments demonstrated that the probe had extremely low toxicity and good biocompatibility. Conclusion: ALDH2 is highly expressed in highly metastatic breast cancer cells and tissues, and is a key molecule for identifying metastatic cells. Molecular imaging by targeting ALDH2 with ALDH2-Cy7@LP-FA can achieve precise localization of tumor boundaries.

参考文献/References:

[1] FERLAY J, COLOMBET M, SOERJOMATARAM I, et al. Cancer statistics for the year 2020: an overview[J]. Int J Cancer, 2021,149(4)778-789.
[2] CORREIA A L, GUIMARAES J C, AUF DER MAUR P, et al. Hepatic stellate cells suppress NK cell-sustained breast cancer dormancy[J]. Nature, 2021, 594(7864): 566-571.
[3] SHOR R E, DAI J, LEE S Y, et al. The PI3K/mTOR inhibitor Gedatolisib eliminates dormant breast cancer cells in organotypic culture, but fails to prevent metastasis in preclinical settings [J]. Mol Oncol, 2022, 16(1): 130-147.
[4] NAUME B, SYNNESTVEDT M, FALK R S, et al. Clinical out-come with correlation to disseminated tumor cell (DTC) status after DTC-guided secondary adjuvant treatment with docetaxel in early breast cancer [J]. J Clin Oncol, 2014, 32(34): 3848-3857.
[5] HUGHES R, CHEN X, COWLEY N, et al. Osteoblast-derived paracrine and juxtacrine signals protect disseminated breast cancer cells from stress [J]. Cancers (Basel), 2021, 13(6):1366.
[6] MUTHUSWAMY S K. Self-organization in cancer: implications for histopathology, cancer cell biology, and metastasis[J]. Cancer Cell, 2021, 39(4): 443-436.
[7] WANG S, LI J, HUA J, et al. Molecular imaging of prostate cancer targeting cd46 using immunoPET[J]. Clin Cancer Res, 2021, 27(5): 1305-1315.
[8] HU Z, CHEN W H, TIAN J, et al. NIRF nanoprobes for cancer mo-lecular imaging: approaching clinic[J]. Trends Mol Med, 2020, 26(5): 469-482.
[9] HU Z, FANG C, LI B, et al. First-in-human liver-tumour surgery guided by multispectral fluorescence imaging in the visible and near-infrared-Ⅰ/Ⅱ windows[J]. Nat Biomed Eng, 2020, 4(3): 259-271.
[10] ZHANG R R, SCHROEDER A B, GRUDZINSKI J J, et al. Beyond the margins: real-time detection of cancer using targeted fluoroph-ores[J]. Nat Rev Clin Oncol, 2017, 14(6): 347-364.
[11] VAN DAM G M, THEMELIS G, CRANE L M, et al. Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-alpha targeting: first in-human results[J]. Nat Med, 2011, 17(10): 1315-1319.
[12] CHEN M H, WENG J J, CHENG C T, et al. ALDH1A3, the major aldehyde dehydrogenase isoform in human cholangiocarcinoma cells, affects prognosis and gemcitabine resistance in cholangiocarcinoma patients[J]. Clin Cancer Res,2016, 22(16): 4225-4235.
[13] MOREB J S, UCAR D, HAN S, et al. The enzymatic activity ohuman aldehyde dehydrogenases 1A2 and 2 (ALDH1A2 and ALDH2) is detected by Aldefluor, inhibited by diethylaminobenzaldehyde and has significant effects on cell proliferation and drug resistance[J]. Chem Biol Interact, 2012, 195(1): 52-60.
[14] KALLIFATIDIS G, SMITH D K, MORERA D S, et al. β-Arrestins regulate stem cell-like phenotype and response to chemotherapy in bladder cancer[J]. Mol Cancer Ther, 2019,18(4):801-811.
[15] CHEN L, WU M, JI C,et al. Silencing transcription factor FOXM1 represses proliferation, migration, and invasion while inducing apoptosis of liver cancer stem cells by regulating the expression of ALDH2[J]. Iubmb Life,2020, 72(2): 285-295.
[16] TANG L, FAN T M, BORST L B, et al. Synthesis and biological response of size-specific, monodisperse drug-silica nanoconjugates [J]. Acs Nano, 2012, 6(5):3954-3966.
[17] TANG L, GABRIELSON N P, UCKUN F M, et al. Size-dependent tumor penetration and in vivo efficacy of monodisperse drug-silica nanoconjugates[J]. Mol Pharm, 2013, 10(3): 883-892.
[18] SHI Q, SHAO K, JIA H,et al. Genomic alterations and evolution of cell clusters in metastatic invasive micropapillary carcinoma of the breast[J]. Nat Commun,2022,13(1):111-112.
[19] DELLA-LONGA S, ARCOVITO A. Structural and functional insights on folate receptor alpha(FRalpha) by homology modeling, ligand docking and molecular dynamics[J]. J Mol Graph Model,2013, 44: 197-207.
[20] SALAZAR M D, RATNAM M. The folate receptor: what does it promise in tissue-targeted therapeutics■[J]. Cancer Metastasis Rev, 2007, 26(1): 141-152.
[21] FENG L, CHEN W, MA X, et al. Near-infrared heptamethinecyanines(Cy7): from structure, property to application[J]. Org Biomol Chem,2020, 18(46):9385-9397.
[22] MENG X, LI W, SUN Z, et al. Tumor-targeted small molecule for dual-modal imaging-guided photo therapy upon near-infrared excitation[J].J Mater Chem B,2017,5:9405-9411.
[23] ZHANG Y, BI J, XIA S, et al. A near-infrared fluorescent probe based on a FRET rhodamine donor linked to a cyanine acceptor for sensitive detection of intracellular pH alternations[J]. Molecules,2018,23:2679-2680.
[24] ALACHOUZ G, SCHULTE A M, MONDAL A, et al. Computational design, synthesis, and photochemistry of cy7-ppg, an efficient nir-activated photolabile protecting group for therapeutic applications[J]. Angew Chem Int Ed Engl,2022,61(27):1308-1310.
[25] KIMURA M, YOKOYAMA A, HIGUCHI S. Aldehyde dehydrogenase-2 as a therapeutic target[J]. Expert Opin Ther Targets, 2019, 23(11): 955-966.
[26] GARAVCOECHEA J I, CROSSAN G P, LANGEVIN F, et al. Alcohol and endogenous aldehydes damage chromosomes and mutate stem cells[J]. Nature, 2018, 553(7687): 171-177.
[27] RAMAKRISHNAN S, GRANGER V, RAK M, et al. Inhibition of EZH2 induces NK cell-mediated differentiation and death in muscle-invasive bladder cancer[J]. Cell Death Differ,2019,26(10):2100-2114.
[28] ABOULOUARD S, WISZDORSKI M, DUHAMEL M,et al. Inde-pth proteomics analysis of sentinel lymph nodes from individuals with endometrial cancer[J]. Cell Rep Med,2021,2(6):100-108.

相似文献/References:

[1]朱悦,张诗武,张丹芳,等.TA2小鼠自发乳腺癌血清蛋白质组学研究[J].天津医科大学学报,2013,19(05):373.
[2]刘 营,孙保存,刘铁菊,等.AURKA蛋白激酶在三阴乳腺癌干细胞形成血管拟态中的实验研究[J].天津医科大学学报,2013,19(06):437.
 LIU Ying,SUN Bao-cun,LIU Tie-ju,et al.Experimental study of AURKA protein kinase in the formation of vascular mimicry in triple-negative breast cancer stem cells[J].Journal of Tianjin Medical University,2013,19(01):437.
[3]伦淑敏.HOXA5基因真核表达质粒的构建及在乳腺癌细胞中的功能研究[J].天津医科大学学报,2014,20(05):337.
 LUN Shu-min. Construction of HOXA5 eukaryotic expression plasmid of and its biological significance in breast cancer cells[J].Journal of Tianjin Medical University,2014,20(01):337.
[4]伦淑敏.肌细胞增强因子2A基因真核表达质粒的构建及对乳腺癌细胞MCF-7增殖能力的影响[J].天津医科大学学报,2014,20(06):429.
 LUN Shu-min.Construction of myocyte enhancer factor 2A eukaryotic expression plasmid and effects on cell proliferation in breast cancer cell line MCF7[J].Journal of Tianjin Medical University,2014,20(01):429.
[5]孙秀梅,张 飞,田 然,等.Nanog表达上调促进乳腺癌细胞MCF-7的增殖和侵袭[J].天津医科大学学报,2014,20(06):421.
 SUN Xiu-mei,ZHANG Fei,TIAN Ran,et al.Up-regulation of Nanog promotes cell proliferation and invasion in breast cancer cells MCF-7[J].Journal of Tianjin Medical University,2014,20(01):421.
[6]张 洁,张 飞,冀 为,等. SHP2不同突变体对乳腺癌细胞的迁移和侵袭能力的影响[J].天津医科大学学报,2015,21(02):93.
 ZHANG Jie,ZHANG Fei,JI Wei,et al. Effect of different SHP2 mutants on breast cancer cell migration and invasion[J].Journal of Tianjin Medical University,2015,21(01):93.
[7]蔡 隽. FOXQ1稳定表达乳腺癌细胞系的建立及鉴定[J].天津医科大学学报,2015,21(04):292.
 CAI Jun.Establishment and identification of cell lines with stable expression of FOXQ1 in MDA-MB-231-luc[J].Journal of Tianjin Medical University,2015,21(01):292.
[8]蔡 隽 综述,冯玉梅 审校.叉头框转录因子调控乳腺癌生物学特性的研究进展[J].天津医科大学学报,2015,21(05):455.
[9]任宗娜.沉默Notch4基因对乳腺癌细胞系MDA-MB-231增殖和迁移侵袭能力的影响[J].天津医科大学学报,2015,21(06):469.
 REN Zong-na.Inhibition effect of?silencing?? Notch4 gene on the proliferation and migration and invasion activity of? breast cancer cell line?MDA-MB-231[J].Journal of Tianjin Medical University,2015,21(01):469.
[10]周岩,宋伟杰,张飞,等.人附睾蛋白4在乳腺癌发生发展中的机制研究[J].天津医科大学学报,2015,21(06):466.
 ZHOU Yan,SONG Wei-jie,ZHANG Fei,et al.Mechanism of human epididymis protein 4 in development and progression of breast cancer[J].Journal of Tianjin Medical University,2015,21(01):466.

备注/Memo

备注/Memo:
基金项目 国家自然科学基金资助项目(82173344)
作者简介 牛琛(1997-),女,硕士,研究方向:病理学与病理生理学;通信作者:付丽,E-mail:fulijyb@hotmail.com。
更新日期/Last Update: 2024-01-01