[1] FERLAY J, COLOMBET M, SOERJOMATARAM I, et al. Cancer statistics for the year 2020: an overview[J]. Int J Cancer, 2021,149(4)778-789.
[2] CORREIA A L, GUIMARAES J C, AUF DER MAUR P, et al. Hepatic stellate cells suppress NK cell-sustained breast cancer dormancy[J]. Nature, 2021, 594(7864): 566-571.
[3] SHOR R E, DAI J, LEE S Y, et al. The PI3K/mTOR inhibitor Gedatolisib eliminates dormant breast cancer cells in organotypic culture, but fails to prevent metastasis in preclinical settings [J]. Mol Oncol, 2022, 16(1): 130-147.
[4] NAUME B, SYNNESTVEDT M, FALK R S, et al. Clinical out-come with correlation to disseminated tumor cell (DTC) status after DTC-guided secondary adjuvant treatment with docetaxel in early breast cancer [J]. J Clin Oncol, 2014, 32(34): 3848-3857.
[5] HUGHES R, CHEN X, COWLEY N, et al. Osteoblast-derived paracrine and juxtacrine signals protect disseminated breast cancer cells from stress [J]. Cancers (Basel), 2021, 13(6):1366.
[6] MUTHUSWAMY S K. Self-organization in cancer: implications for histopathology, cancer cell biology, and metastasis[J]. Cancer Cell, 2021, 39(4): 443-436.
[7] WANG S, LI J, HUA J, et al. Molecular imaging of prostate cancer targeting cd46 using immunoPET[J]. Clin Cancer Res, 2021, 27(5): 1305-1315.
[8] HU Z, CHEN W H, TIAN J, et al. NIRF nanoprobes for cancer mo-lecular imaging: approaching clinic[J]. Trends Mol Med, 2020, 26(5): 469-482.
[9] HU Z, FANG C, LI B, et al. First-in-human liver-tumour surgery guided by multispectral fluorescence imaging in the visible and near-infrared-Ⅰ/Ⅱ windows[J]. Nat Biomed Eng, 2020, 4(3): 259-271.
[10] ZHANG R R, SCHROEDER A B, GRUDZINSKI J J, et al. Beyond the margins: real-time detection of cancer using targeted fluoroph-ores[J]. Nat Rev Clin Oncol, 2017, 14(6): 347-364.
[11] VAN DAM G M, THEMELIS G, CRANE L M, et al. Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-alpha targeting: first in-human results[J]. Nat Med, 2011, 17(10): 1315-1319.
[12] CHEN M H, WENG J J, CHENG C T, et al. ALDH1A3, the major aldehyde dehydrogenase isoform in human cholangiocarcinoma cells, affects prognosis and gemcitabine resistance in cholangiocarcinoma patients[J]. Clin Cancer Res,2016, 22(16): 4225-4235.
[13] MOREB J S, UCAR D, HAN S, et al. The enzymatic activity ohuman aldehyde dehydrogenases 1A2 and 2 (ALDH1A2 and ALDH2) is detected by Aldefluor, inhibited by diethylaminobenzaldehyde and has significant effects on cell proliferation and drug resistance[J]. Chem Biol Interact, 2012, 195(1): 52-60.
[14] KALLIFATIDIS G, SMITH D K, MORERA D S, et al. β-Arrestins regulate stem cell-like phenotype and response to chemotherapy in bladder cancer[J]. Mol Cancer Ther, 2019,18(4):801-811.
[15] CHEN L, WU M, JI C,et al. Silencing transcription factor FOXM1 represses proliferation, migration, and invasion while inducing apoptosis of liver cancer stem cells by regulating the expression of ALDH2[J]. Iubmb Life,2020, 72(2): 285-295.
[16] TANG L, FAN T M, BORST L B, et al. Synthesis and biological response of size-specific, monodisperse drug-silica nanoconjugates [J]. Acs Nano, 2012, 6(5):3954-3966.
[17] TANG L, GABRIELSON N P, UCKUN F M, et al. Size-dependent tumor penetration and in vivo efficacy of monodisperse drug-silica nanoconjugates[J]. Mol Pharm, 2013, 10(3): 883-892.
[18] SHI Q, SHAO K, JIA H,et al. Genomic alterations and evolution of cell clusters in metastatic invasive micropapillary carcinoma of the breast[J]. Nat Commun,2022,13(1):111-112.
[19] DELLA-LONGA S, ARCOVITO A. Structural and functional insights on folate receptor alpha(FRalpha) by homology modeling, ligand docking and molecular dynamics[J]. J Mol Graph Model,2013, 44: 197-207.
[20] SALAZAR M D, RATNAM M. The folate receptor: what does it promise in tissue-targeted therapeutics■[J]. Cancer Metastasis Rev, 2007, 26(1): 141-152.
[21] FENG L, CHEN W, MA X, et al. Near-infrared heptamethinecyanines(Cy7): from structure, property to application[J]. Org Biomol Chem,2020, 18(46):9385-9397.
[22] MENG X, LI W, SUN Z, et al. Tumor-targeted small molecule for dual-modal imaging-guided photo therapy upon near-infrared excitation[J].J Mater Chem B,2017,5:9405-9411.
[23] ZHANG Y, BI J, XIA S, et al. A near-infrared fluorescent probe based on a FRET rhodamine donor linked to a cyanine acceptor for sensitive detection of intracellular pH alternations[J]. Molecules,2018,23:2679-2680.
[24] ALACHOUZ G, SCHULTE A M, MONDAL A, et al. Computational design, synthesis, and photochemistry of cy7-ppg, an efficient nir-activated photolabile protecting group for therapeutic applications[J]. Angew Chem Int Ed Engl,2022,61(27):1308-1310.
[25] KIMURA M, YOKOYAMA A, HIGUCHI S. Aldehyde dehydrogenase-2 as a therapeutic target[J]. Expert Opin Ther Targets, 2019, 23(11): 955-966.
[26] GARAVCOECHEA J I, CROSSAN G P, LANGEVIN F, et al. Alcohol and endogenous aldehydes damage chromosomes and mutate stem cells[J]. Nature, 2018, 553(7687): 171-177.
[27] RAMAKRISHNAN S, GRANGER V, RAK M, et al. Inhibition of EZH2 induces NK cell-mediated differentiation and death in muscle-invasive bladder cancer[J]. Cell Death Differ,2019,26(10):2100-2114.
[28] ABOULOUARD S, WISZDORSKI M, DUHAMEL M,et al. Inde-pth proteomics analysis of sentinel lymph nodes from individuals with endometrial cancer[J]. Cell Rep Med,2021,2(6):100-108.
[1]朱悦,张诗武,张丹芳,等.TA2小鼠自发乳腺癌血清蛋白质组学研究[J].天津医科大学学报,2013,19(05):373.
[2]刘 营,孙保存,刘铁菊,等.AURKA蛋白激酶在三阴乳腺癌干细胞形成血管拟态中的实验研究[J].天津医科大学学报,2013,19(06):437.
LIU Ying,SUN Bao-cun,LIU Tie-ju,et al.Experimental study of AURKA protein kinase in the formation of vascular mimicry in triple-negative breast cancer stem cells[J].Journal of Tianjin Medical University,2013,19(01):437.
[3]伦淑敏.HOXA5基因真核表达质粒的构建及在乳腺癌细胞中的功能研究[J].天津医科大学学报,2014,20(05):337.
LUN Shu-min. Construction of HOXA5 eukaryotic expression plasmid of and its biological significance in breast cancer cells[J].Journal of Tianjin Medical University,2014,20(01):337.
[4]伦淑敏.肌细胞增强因子2A基因真核表达质粒的构建及对乳腺癌细胞MCF-7增殖能力的影响[J].天津医科大学学报,2014,20(06):429.
LUN Shu-min.Construction of myocyte enhancer factor 2A eukaryotic expression plasmid and effects on cell proliferation in breast cancer cell line MCF7[J].Journal of Tianjin Medical University,2014,20(01):429.
[5]孙秀梅,张 飞,田 然,等.Nanog表达上调促进乳腺癌细胞MCF-7的增殖和侵袭[J].天津医科大学学报,2014,20(06):421.
SUN Xiu-mei,ZHANG Fei,TIAN Ran,et al.Up-regulation of Nanog promotes cell proliferation and invasion in breast cancer cells MCF-7[J].Journal of Tianjin Medical University,2014,20(01):421.
[6]张 洁,张 飞,冀 为,等. SHP2不同突变体对乳腺癌细胞的迁移和侵袭能力的影响[J].天津医科大学学报,2015,21(02):93.
ZHANG Jie,ZHANG Fei,JI Wei,et al. Effect of different SHP2 mutants on breast cancer cell migration and invasion[J].Journal of Tianjin Medical University,2015,21(01):93.
[7]蔡 隽. FOXQ1稳定表达乳腺癌细胞系的建立及鉴定[J].天津医科大学学报,2015,21(04):292.
CAI Jun.Establishment and identification of cell lines with stable expression of FOXQ1 in MDA-MB-231-luc[J].Journal of Tianjin Medical University,2015,21(01):292.
[8]蔡 隽 综述,冯玉梅 审校.叉头框转录因子调控乳腺癌生物学特性的研究进展[J].天津医科大学学报,2015,21(05):455.
[9]任宗娜.沉默Notch4基因对乳腺癌细胞系MDA-MB-231增殖和迁移侵袭能力的影响[J].天津医科大学学报,2015,21(06):469.
REN Zong-na.Inhibition effect of?silencing?? Notch4 gene on the proliferation and migration and invasion activity of? breast cancer cell line?MDA-MB-231[J].Journal of Tianjin Medical University,2015,21(01):469.
[10]周岩,宋伟杰,张飞,等.人附睾蛋白4在乳腺癌发生发展中的机制研究[J].天津医科大学学报,2015,21(06):466.
ZHOU Yan,SONG Wei-jie,ZHANG Fei,et al.Mechanism of human epididymis protein 4 in development and progression of breast cancer[J].Journal of Tianjin Medical University,2015,21(01):466.