[1] Rocha-Brischiliari S C, Oliveira R R, Andrade L, et al. The Rise in Mortality from Breast Cancer in Young Women: Trend Analysis in Brazil[J]. PLoS One, 2017,12(1):e168950
[2] Zhao Y, Liu Y. A mechanistic overview of herbal medicine and botanical compounds to target transcriptional factors in Breast cancer[J]. Pharmacol Res, 2017, [Epub ahead of print]
[3] Marin M, Karis A, Visser P, et al. Transcription factor Sp1 is essential for early embryonic development but dispensable for cell growth and differentiation[J]. Cell, 1997,89(4):619
[4] Beishline K, Azizkhan-Clifford J. Sp1 and the 'hallmarks of cancer'[J]. FEBS J, 2015,282(2):224
[5] Safe S, Abbruzzese J L, Abdelrahim M, et al. Specificity Protein Transcription Factors and Cancer: Opportunities for Drug Development[J]. Cancer Prev Res (Phila), 2018 , [Epub ahead of print]
[6] Cawley S, Bekiranov S, Ng H H, et al. Unbiased mapping of transcription factor binding sites along human chromosomes 21 and 22 points to widespread regulation of noncoding RNAs[J]. Cell, 2004, 116(4):499
[7] Marin M, Karis A, Visser P, et al. Transcription factor Sp1 is essential for early embryonic development but dispensable for cell growth and differentiation[J]. Cell, 1997,89(4):619
[8] Mauro L, Pellegrino M, Giordano F, et al. Estrogen receptor-alpha drives adiponectin effects on cyclin D1 expression in breast cancer cells[J]. FASEB J, 2015,29(5):2150
[9] Biggs J R, Kudlow J E, Kraft A S. The role of the transcription factor Sp1 in regulating the expression of the WAF1/CIP1 gene in U937 leukemic cells[J]. J Biol Chem, 1996,271(2):901
[10] Wei M, Liu B, Gu Q, et al. Stat6 cooperates with Sp1 in controlling breast cancer cell proliferation by modulating the expression of p21(Cip1/WAF1) and p27 (Kip1)[J]. Cell Oncol (Dordr), 2013,36(1):79
[11] Wei M, He Q, Yang Z, et al. Integrity of the LXXLL motif in Stat6 is required for the inhibition of breast cancer cell growth and enhancement of differentiation in the context of progesterone[J]. BMC Cancer, 2014,14(10):10
[12] Kim M K, Jeon B N, Koh D I, et al. Regulation of the cyclin-dependent kinase inhibitor 1A gene (CDKN1A) by the repressor BOZF1 through inhibition of p53 acetylation and transcription factor Sp1 binding[J]. J Biol Chem, 2013,288(10):7053
[13] Zhang Y, Zhao Y, Li L, et al. The oncoprotein HBXIP upregulates PDGFB via activating transcription factor Sp1 to promote the proliferation of breast cancer cells[J]. Biochem Biophys Res Commun, 2013,434(2):305
[14] Yue L, Li L, Liu F, et al. The oncoprotein HBXIP activates transcriptional coregulatory protein LMO4 via Sp1 to promote proliferation of breast cancer cells[J]. Carcinogenesis, 2013,34(4):927
[15] Werner H, Sarfstein R. Transcriptional and epigenetic control of IGF1R gene expression: implications in metabolism and cancer[J]. Growth Horm IGF Res, 2014,24(4):112
[16] Schacter J L, Henson E S, Gibson S B. Estrogen regulation of anti-apoptotic Bcl-2 family member Mcl-1 expression in breast cancer cells[J]. PLoS One, 2014,9(6):e100364
[17] Jia Z, Gao S, M'Rabet N, et al. Sp1 is necessary for gene activation of Adamts17 by estrogen[J]. J Cell Biochem, 2014,115(10):1829
[18] Yang W S, Chadalapaka G, Cho S G, et al. The transcriptional repressor ZBTB4 regulates EZH2 through a MicroRNA-ZBTB4-specificity protein signaling axis[J]. Neoplasia, 2014,16(12):1059
[19] Yao Y, Hu J, Shen Z, et al. MiR-200b expression in breast cancer: a prognostic marker and act on cell proliferation and apoptosis by targeting Sp1[J]. J Cell Mol Med, 2015,19(4):760
[20] Cheng H T, Hung W C. Inhibition of lymphangiogenic factor VEGF-C expression and production by the histone deacetylase inhibitor suberoylanilide hydroxamic acid in breast cancer cells[J]. Oncol Rep, 2013,29(3):1238
[21] Zhao Y, Ma J, Fan Y, et al. TGF-beta transactivates EGFR and facilitates breast cancer migration and invasion through canonical Smad3 and ERK/Sp1 signaling pathways[J]. Mol Oncol, 2018,12(3):305
[22] Kong L M, Liao C G, Zhang Y, et al. A regulatory loop involving miR-22, Sp1, and c-Myc modulates CD147 expression in breast cancer invasion and metastasis[J]. Cancer Res, 2014,74(14):3764
[23] Bajpai R, Nagaraju G P. Specificity protein 1: Its role in colorectal cancer progression and metastasis[J]. Crit Rev Oncol Hematol, 2017, 113(6):1
[24] Nam K, Oh S, Lee K M, et al. CD44 regulates cell proliferation, migration, and invasion via modulation of c-Src transcription in human breast cancer cells[J]. Cell Signal, 2015,27(9):1882
[25] Tarasewicz E, Oakes R S, Aviles M O, et al. Embryonic stem cell secreted factors decrease invasiveness of triple-negative breast cancer cells through regulome modulation[J]. Cancer Biol Ther, 2018,19(4):271
[26] Kwon Y J, Baek H S, Ye D J, et al. CYP1B1 Enhances cell proliferation and metastasis through induction of EMT and activation of Wnt/beta-catenin signaling via Sp1 upregulation[J]. PLoS One, 2016, 11(3):e151598
[27] Nam E H, Lee Y, Zhao X F, et al. ZEB2-Sp1 cooperation induces invasion by upregulating cadherin-11 and integrin alpha5 expression[J]. Carcinogenesis, 2014,35(2):302
[28] Zu X, Zhong J, Tan J, et al. TGF-beta1 induces HMGA1 expression in human breast cancer cells: implications of the involvement of HMGA1 in TGF-beta signaling[J]. Int J Mol Med, 2015,35(3):693
[29] Lu J, Isaji T, Im S, et al. beta-Galactoside alpha2,6-sialyltranferase 1 promotes transforming growth factor-beta-mediated epithelial-mesenchymal transition[J]. J Biol Chem, 2014,289(50):34627
[30] Kuo T C, Tan C T, Chang Y W, et al. Angiopoietin-like protein 1 suppresses SLUG to inhibit cancer cell motility[J]. J Clin Invest, 2013, 123(3):1082
[31] Liu R, Zhi X, Zhou Z, et al. Mithramycin A suppresses basal triple-negative breast cancer cell survival partially via down-regulating Kruppel-like factor 5 transcription by Sp1[J]. Sci Rep, 2018,8(1):1138
[32] Wu X G, Peng S B, Huang Q. Transcriptional regulation of breast cancer resistance protein[J]. Yi Chuan, 2012,34(12):1529
[33] Saha S, Mukherjee S, Mazumdar M, et al. Mithramycin A sensitizes therapy-resistant breast cancer stem cells toward genotoxic drug doxorubicin[J]. Transl Res, 2015,165(5):558
[34] Sankpal U T, Maliakal P, Bose D, et al. Expression of specificity protein transcription factors in pancreatic cancer and their association in prognosis and therapy[J]. Curr Med Chem, 2012,19(22):3779
[35] Liu X, Abdelrahim M, Abudayyeh A, et al. The nonsteroidal anti-inflammatory drug tolfenamic acid inhibits BT474 and SKBR3 breast cancer cell and tumor growth by repressing erbB2 expression[J]. Mol Cancer Ther, 2009,8(5):1207
[36] Chuang C W, Pan M R, Hou M F, et al. Cyclooxygenase-2 up-regulates CCR7 expression via AKT-mediated phosphorylation and activation of Sp1 in breast cancer cells[J]. J Cell Physiol, 2013,228(2):341
[37] Banerjee N, Talcott S, Safe S, et al. Cytotoxicity of pomegranate polyphenolics in breast cancer cells in vitro and vivo: potential role of miRNA-27a and miRNA-155 in cell survival and inflammation[J]. Breast Cancer Res Treat, 2012,136(1):21
[38] Gu G, Barone I, Gelsomino L, et al. Oldenlandia diffusa extracts exert antiproliferative and apoptotic effects on human breast cancer cells through ERalpha/Sp1-mediated p53 activation[J]. J Cell Physiol, 2012,227(10):3363
[39] Kang T H, Seo J H, Oh H, et al. Licochalcone A Suppresses Specificity Protein 1 as a Novel Target in Human Breast Cancer Cells[J]. J Cell Biochem, 2017,118(12):4652
[40] Zhu Y, Yao Z, Wu Z, et al. Role of tumor necrosis factor alpha-induced protein 1 in paclitaxel resistance[J]. Oncogene, 2014,33(25):3246
[1]朱悦,张诗武,张丹芳,等.TA2小鼠自发乳腺癌血清蛋白质组学研究[J].天津医科大学学报,2013,19(05):373.
[2]刘 营,孙保存,刘铁菊,等.AURKA蛋白激酶在三阴乳腺癌干细胞形成血管拟态中的实验研究[J].天津医科大学学报,2013,19(06):437.
LIU Ying,SUN Bao-cun,LIU Tie-ju,et al.Experimental study of AURKA protein kinase in the formation of vascular mimicry in triple-negative breast cancer stem cells[J].Journal of Tianjin Medical University,2013,19(02):437.
[3]伦淑敏.HOXA5基因真核表达质粒的构建及在乳腺癌细胞中的功能研究[J].天津医科大学学报,2014,20(05):337.
LUN Shu-min. Construction of HOXA5 eukaryotic expression plasmid of and its biological significance in breast cancer cells[J].Journal of Tianjin Medical University,2014,20(02):337.
[4]伦淑敏.肌细胞增强因子2A基因真核表达质粒的构建及对乳腺癌细胞MCF-7增殖能力的影响[J].天津医科大学学报,2014,20(06):429.
LUN Shu-min.Construction of myocyte enhancer factor 2A eukaryotic expression plasmid and effects on cell proliferation in breast cancer cell line MCF7[J].Journal of Tianjin Medical University,2014,20(02):429.
[5]孙秀梅,张 飞,田 然,等.Nanog表达上调促进乳腺癌细胞MCF-7的增殖和侵袭[J].天津医科大学学报,2014,20(06):421.
SUN Xiu-mei,ZHANG Fei,TIAN Ran,et al.Up-regulation of Nanog promotes cell proliferation and invasion in breast cancer cells MCF-7[J].Journal of Tianjin Medical University,2014,20(02):421.
[6]张 洁,张 飞,冀 为,等. SHP2不同突变体对乳腺癌细胞的迁移和侵袭能力的影响[J].天津医科大学学报,2015,21(02):93.
ZHANG Jie,ZHANG Fei,JI Wei,et al. Effect of different SHP2 mutants on breast cancer cell migration and invasion[J].Journal of Tianjin Medical University,2015,21(02):93.
[7]蔡 隽. FOXQ1稳定表达乳腺癌细胞系的建立及鉴定[J].天津医科大学学报,2015,21(04):292.
CAI Jun.Establishment and identification of cell lines with stable expression of FOXQ1 in MDA-MB-231-luc[J].Journal of Tianjin Medical University,2015,21(02):292.
[8]蔡 隽 综述,冯玉梅 审校.叉头框转录因子调控乳腺癌生物学特性的研究进展[J].天津医科大学学报,2015,21(05):455.
[9]任宗娜.沉默Notch4基因对乳腺癌细胞系MDA-MB-231增殖和迁移侵袭能力的影响[J].天津医科大学学报,2015,21(06):469.
REN Zong-na.Inhibition effect of?silencing?? Notch4 gene on the proliferation and migration and invasion activity of? breast cancer cell line?MDA-MB-231[J].Journal of Tianjin Medical University,2015,21(02):469.
[10]周岩,宋伟杰,张飞,等.人附睾蛋白4在乳腺癌发生发展中的机制研究[J].天津医科大学学报,2015,21(06):466.
ZHOU Yan,SONG Wei-jie,ZHANG Fei,et al.Mechanism of human epididymis protein 4 in development and progression of breast cancer[J].Journal of Tianjin Medical University,2015,21(02):466.