|本期目录/Table of Contents|

[1]王世霞,杨艳芳,马 宁,等.基于芯片数据的雌激素受体阳性乳腺癌他莫昔芬耐药相关基因分析[J].天津医科大学学报,2019,25(01):32-36.
 WANG Shi-xia,YANG Yan-fang,MA Ning,et al.Bioinformatics analysis of key genes for tamoxifen resistancein estrogen receptor positive breast cancer[J].Journal of Tianjin Medical University,2019,25(01):32-36.
点击复制

基于芯片数据的雌激素受体阳性乳腺癌他莫昔芬耐药相关基因分析(PDF)
分享到:

《天津医科大学学报》[ISSN:1006-8147/CN:12-1259/R]

卷:
25卷
期数:
2019年01期
页码:
32-36
栏目:
基础医学
出版日期:
2019-01-20

文章信息/Info

Title:
Bioinformatics analysis of key genes for tamoxifen resistancein estrogen receptor positive breast cancer
文章编号:
1006-8147(2019)01-0032-05
作者:
王世霞杨艳芳马 宁刘 君
(天津医科大学肿瘤医院乳腺肿瘤二科,国家肿瘤临床医学研究中心,乳腺癌防治教育部重点实验室,天津市“肿瘤防治”重点实验室,天津市恶性肿瘤临床医学研究中心,天津 300060)
Author(s):
WANG Shi-xia YANG Yan-fang MA Ning LIU Jun
(Department of The Second Breast Cancer, Cancer Institute and Hospital, Tianjin Medical University, National Clinical Research Center of Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin’s clinical Research Center for Cancer, Tianjin 300060, China)
关键词:
乳腺癌他莫昔芬耐药差异表达基因生物信息学
Keywords:
breast cancer tamoxifen resistance differentially expressed genes bioinformatics
分类号:
R737.9
DOI:
-
文献标志码:
A
摘要:
目的:从分子水平揭示激素受体阳性乳腺癌他莫昔芬耐药的机制,并寻找潜在的治疗他莫昔芬耐药的靶点。方法:从公共基因芯片表达数据库(GEO)中下载雌激素受体阳性乳腺癌的相关基因芯片数据GSE67916,利用GEO2R在线分析工具筛选他莫昔芬耐药性与敏感性乳腺癌的差异表达基因;并利用DAVID软件对所筛选差异表达基因进行相关功能及通路富集分析;通过STRING、Cytoscape等工具对其进行蛋白间相互作用网络的构建和分析。结果:筛选出438个差异表达基因,其中300个上调表达基因,138个下调表达基因。GO功能分析发现这些差异基因主要参与蛋白结合、细胞对雌激素的反应、免疫应答、细胞质及细胞外基质等分子功能及生物学过程;KEGG通路富集分析显示主要富集在MAPK信号通路和HIF-1信号通路等。STRING、Cytoscape分析显示MAPK1、ESR1、SMARCA4、RANBP2和PRKCA为潜在的关键节点基因,对其进行文献挖掘及分析显示与激素受体阳性乳腺癌他莫昔芬耐药相关。结论:利用生物信息学方法对他莫昔芬耐药与他莫昔芬敏感的雌激素受体阳性乳腺癌的差异表达基因分析,可有效发掘这些差异表达基因的相互作用,为雌激素受体阳性乳腺癌他莫昔芬耐药寻找新的治疗靶点提供新方向。
Abstract:
Objective: To investigate the molecular mechanisms in resistance of tamoxifen in ER positive breast cancer and identify potential targets for anti-tamoxifen resistance. Methods: The GSE67916 gene data aboutestrogen receptor-positive breast cancer were downloaded from the Gene Expression Omnibus database. GEO2R online tool was used to mine and screen the differentially expressed genes (DEGs) between tamoxifen-resistant and tamoxifen-sensitive breast cancer. Gene Ontology (GO) and pathway enrichment analyses were applied to investigate the functions and pathways of these DEGs by using DAVID. Subsequently, the protein-protein interaction (PPI) network was constructed using the Search Tool for the Retrieval of Interacting Genes (STRING) and visualized using the Cytoscape software. Results: In total, we found 438 DEGs, of which 300 genes were up-regulated and 138 genes were down-regulated. By using the GO and KEGG analysis, the DEGs were significantly enhanced in the protein binding, cellular response to estradiol stimulus, immune response, cytoplasm and extracellular exosome and so on, while the most significant pathways included MAPK signaling pathway,HIF-1 signaling pathwayand so on. The key node genes of MAPK1, ESR1, SMARCA4, RANBP2 and PRKCA were found in the PPI network via STRING and Cytoscape. Finally, It was discovered that these genes may be related to tamoxifen resistance in hormone receptor positive breast cancer.Conclusion: By bioinformatics methods to analyze DEGs in tamoxifen-resistantand tamoxifen-sensitive estrogen receptor positive breast cancer, we have discovered the interaction information of these differentially expressed genes and it could make a contribution to the development of therapeutic targets for tamoxifen resistance in estrogenreceptor positive breast cancer.

参考文献/References:


[1] Wang H, Tan G, Dong L, et al. Circulating MiR-125b as a marker predicting chemoresistance in breast cancer[J]. PLoS One, 2012, 7(4): e34210
[2] Li G, Zhang J, Jin K, et al. Estrogen receptor‐α36 is involved in development of acquired tamoxifen resistance via regulating the growth status switch in breast cancer cells[J]. Mol Oncol, 2013, 7(3): 611
[3] Kazi A A, Gilani R A, Schech A J, et al. Nonhypoxic regulation and role of hypoxia-inducible factor 1 in aromatase inhibitor resistant breast cancer [J]. Breast cancer research : BCR, 2014, 16(1): R15
[4] Aldhaheri M, Wu J, Skliris G P, et al. CARM1 Is an Important Determinant of ERα-Dependent Breast Cancer Cell Differentiation and Proliferation in Breast Cancer Cells[J]. Cancer Res, 2011, 71(6): 2118
[5] Ring A, Dowsett M. Mechanisms of tamoxifen resistance [J]. Endocr Relat Cancer, 2004, 11(4): 643
[6] Bushell W C. New bioinformatics program identifies behavioral medicine interventions for epidemic cardiovascular disease in the developing world: analysis of multidisciplinary findings for launching a new global public health initiative in heart-brain medicine [J]. Cleve Clin J Med, 2009, 76(suppl 2):S93
[7] Elias D, Vever H, Lnkholm A V, et al. Gene expression profiling identifies FYN as an important molecule in tamoxifen resistance and a predictor of early recurrence in patients treated with endocrine therapy [J]. Oncogene, 2014, 34(15): 1919
[8] Ashburner M, Ball C A, Blake J A, et al. Gene Ontology: tool for the unification of biology [J]. Nat Genet, 2000, 25(1): 25
[9] Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes [J]. Nucleic Acids Res, 2000, 28(1):27
[10] Liu X, Yongzhen M A, Yang W, et al. Identification of therapeutic targets for breast cancer using biological informatics methods [J]. Mol Med Report, 2015, 12(2): 1789
[11] Saito R, Smoot M E, Ono K, et al. A travel guide to Cytoscape plugins [J]. Nat Methods, 2012, 9(11): 1069
[12] Chang A K, Huijian W U. The role of AIB1 in breast cancer [J]. Oncol Lett, 2012, 4(4): 588
[13] Brychtova V, Vojtesek B, Hrstka R. Anterior gradient 2: a novel player in tumor cell biology [J]. Cancer Lett, 2011, 304(1): 1
[14] Su Q, Hu S, Gao H, et al. Role of AIB1 for Tamoxifen Resistance in Estrogen Receptor-Positive Breast Cancer Cells[J]. Oncology, 2008, 75(3-4): 159
[15] Ignatov A, Ignatov T, Weissenborn C, et al. G-protein-coupled estrogen receptor GPR30 and tamoxifen resistance in breast cancer [J]. Breast Cancer Res Treat, 2011, 128(2): 457
[16] Jung Y C, Han S, Hua L, et al. Kazinol-E is a specific inhibitor of ERK that suppresses the enrichment of a breast cancer stem-like cell population[J]. Biochem Biophys Res Commun, 2016, 470(2): 294
[17] Chen Q G, Zhou W, Han T, et al. MiR-378 suppresses prostate cancer cell growth through downregulation of MAPK1 in vitro and in vivo [J]. Tumour Biol, 2016, 37(2): 1
[18] Zou Y, Deng W, Wang F, et al. A novel somatic MAPK1 mutation in primary ovarian mixed germ cell tumors [J]. Oncol Rep, 2015, 35(2): 725
[19] Generali D, Buffa F M, Berruti A, et al. Phosphorylated ERalpha, HIF-1alpha, and MAPK signaling as predictors of primary endocrine treatment response and resistance in patients with breast cancer [J]. J Clin Oncol, 2009, 27(2): 227
[20] Leeuw R D, Neefjes J, Michalides R. A role for estrogen receptor Phosphorylation in the Resistance to Tamoxifen[J]. Int J Breast Cancer, 2011, 2011(2): p232435
[21] Wu J I. Diverse functions of ATP-dependent chromatin remodeling complexes in development and cancer [J]. Acta Biochim Biophys Sin, 2012, 44(1): 54
[22] Wu Q, Madany P, Akech J, et al. The SWI/SNF ATPases Are Required for Triple Negative Breast Cancer Cell Proliferation[J]. J Cell Physiol, 2015, 230(11): 2683
[23] Wang S, Zhang B, Faller D V. BRG1/BRM and prohibitin are required for growth suppression by estrogen antagonists[J]. EMBO J, 2004, 23(11): 2293
[24] Jeselsohn R, Buchwalter G, Angelis C D, et al. ESR1 mutations - mechanism for acquired endocrine resistance in breast cancer [J]. Nat Rev Clin Oncol, 2015, 12(10): 573
[25] Jeselsohn R, Yelensky R, Buchwalter G, et al. Emergence of constitutively active estrogen receptor-α mutations in pretreated advanced estrogen receptor positive breast cancer[J]. Clin Cancer Res, 2014, 20(7): 1757
[26] Kim S, Lee J, Lee S K, et al. Protein kinase C-alpha downregulates estrogen receptor-alpha by suppressing c-Jun phosphorylation in estrogen receptor-positive breast cancer cells [J]. Oncol Rep, 2014, 31(3): 1423
[27] Nakashima S. Protein Kinase Cα (PKCα): Regulation and Biological Function [J]. J Biochem, 2008, 132(5): 669
[28] Kim S, Han J, Lee S K, et al. Berberine suppresses the TPA-induced MMP-1 and MMP-9 expressions through the inhibition of PKC-α in breast cancer cells [J]. J Surg Res, 2012, 176(1): e21
[29] Hashizume C, Kobayashi A, Wong R W. Down-modulation of nucleoporin RanBP2/Nup358 impaired chromosomal alignment and induced mitotic catastrophe [J]. Cell Death Dis, 2013, 4(10): e854
[30] Lee S E, Kang S Y, Takeuchi K, et al. Identification of RANBP2-ALK fusion in ALK positive diffuse large B-cell lymphoma [J]. Hematol Oncol, 2014, 32(4): 221
[31] Miyauchi Y, Yogosawa S, Honda R, et al. Sumoylation of Mdm2 by protein inhibitor of activated STAT (PIAS) and RanBP2 enzymes [J]. J Biol Chem, 2002, 277(51): 50131
[32] Packham S, Warsito D, Lin Y, et al. Nuclear translocation of IGF-1R via p150Glued and an importin-|[beta]||[sol]|RanBP2-dependent pathway in cancer cells[J]. Oncogene, 2015, 34(17): 2227

相似文献/References:

[1]朱悦,张诗武,张丹芳,等.TA2小鼠自发乳腺癌血清蛋白质组学研究[J].天津医科大学学报,2013,19(05):373.
[2]刘 营,孙保存,刘铁菊,等.AURKA蛋白激酶在三阴乳腺癌干细胞形成血管拟态中的实验研究[J].天津医科大学学报,2013,19(06):437.
 LIU Ying,SUN Bao-cun,LIU Tie-ju,et al.Experimental study of AURKA protein kinase in the formation of vascular mimicry in triple-negative breast cancer stem cells[J].Journal of Tianjin Medical University,2013,19(01):437.
[3]伦淑敏.HOXA5基因真核表达质粒的构建及在乳腺癌细胞中的功能研究[J].天津医科大学学报,2014,20(05):337.
 LUN Shu-min. Construction of HOXA5 eukaryotic expression plasmid of and its biological significance in breast cancer cells[J].Journal of Tianjin Medical University,2014,20(01):337.
[4]伦淑敏.肌细胞增强因子2A基因真核表达质粒的构建及对乳腺癌细胞MCF-7增殖能力的影响[J].天津医科大学学报,2014,20(06):429.
 LUN Shu-min.Construction of myocyte enhancer factor 2A eukaryotic expression plasmid and effects on cell proliferation in breast cancer cell line MCF7[J].Journal of Tianjin Medical University,2014,20(01):429.
[5]孙秀梅,张 飞,田 然,等.Nanog表达上调促进乳腺癌细胞MCF-7的增殖和侵袭[J].天津医科大学学报,2014,20(06):421.
 SUN Xiu-mei,ZHANG Fei,TIAN Ran,et al.Up-regulation of Nanog promotes cell proliferation and invasion in breast cancer cells MCF-7[J].Journal of Tianjin Medical University,2014,20(01):421.
[6]张 洁,张 飞,冀 为,等. SHP2不同突变体对乳腺癌细胞的迁移和侵袭能力的影响[J].天津医科大学学报,2015,21(02):93.
 ZHANG Jie,ZHANG Fei,JI Wei,et al. Effect of different SHP2 mutants on breast cancer cell migration and invasion[J].Journal of Tianjin Medical University,2015,21(01):93.
[7]蔡 隽. FOXQ1稳定表达乳腺癌细胞系的建立及鉴定[J].天津医科大学学报,2015,21(04):292.
 CAI Jun.Establishment and identification of cell lines with stable expression of FOXQ1 in MDA-MB-231-luc[J].Journal of Tianjin Medical University,2015,21(01):292.
[8]蔡 隽 综述,冯玉梅 审校.叉头框转录因子调控乳腺癌生物学特性的研究进展[J].天津医科大学学报,2015,21(05):455.
[9]任宗娜.沉默Notch4基因对乳腺癌细胞系MDA-MB-231增殖和迁移侵袭能力的影响[J].天津医科大学学报,2015,21(06):469.
 REN Zong-na.Inhibition effect of?silencing?? Notch4 gene on the proliferation and migration and invasion activity of? breast cancer cell line?MDA-MB-231[J].Journal of Tianjin Medical University,2015,21(01):469.
[10]周岩,宋伟杰,张飞,等.人附睾蛋白4在乳腺癌发生发展中的机制研究[J].天津医科大学学报,2015,21(06):466.
 ZHOU Yan,SONG Wei-jie,ZHANG Fei,et al.Mechanism of human epididymis protein 4 in development and progression of breast cancer[J].Journal of Tianjin Medical University,2015,21(01):466.
[11]柴慈曼,杨绍时.乳腺癌他莫昔芬耐药相关基因及通路的筛选[J].天津医科大学学报,2018,24(06):501.
 CHAI Ci-man,YANG Shao-shi.Identification of keygenes and pathwaysoftamoxifen-resistancein breast cancer[J].Journal of Tianjin Medical University,2018,24(01):501.

备注/Memo

备注/Memo:

作者简介 王世霞(1991-),女,硕士在读,研究方向:肿瘤学;通信作者:刘君,E-mail:dr_liujun@126.com。
更新日期/Last Update: 2019-03-01