[1] Wang H, Tan G, Dong L, et al. Circulating MiR-125b as a marker predicting chemoresistance in breast cancer[J]. PLoS One, 2012, 7(4): e34210
[2] Li G, Zhang J, Jin K, et al. Estrogen receptor‐α36 is involved in development of acquired tamoxifen resistance via regulating the growth status switch in breast cancer cells[J]. Mol Oncol, 2013, 7(3): 611
[3] Kazi A A, Gilani R A, Schech A J, et al. Nonhypoxic regulation and role of hypoxia-inducible factor 1 in aromatase inhibitor resistant breast cancer [J]. Breast cancer research : BCR, 2014, 16(1): R15
[4] Aldhaheri M, Wu J, Skliris G P, et al. CARM1 Is an Important Determinant of ERα-Dependent Breast Cancer Cell Differentiation and Proliferation in Breast Cancer Cells[J]. Cancer Res, 2011, 71(6): 2118
[5] Ring A, Dowsett M. Mechanisms of tamoxifen resistance [J]. Endocr Relat Cancer, 2004, 11(4): 643
[6] Bushell W C. New bioinformatics program identifies behavioral medicine interventions for epidemic cardiovascular disease in the developing world: analysis of multidisciplinary findings for launching a new global public health initiative in heart-brain medicine [J]. Cleve Clin J Med, 2009, 76(suppl 2):S93
[7] Elias D, Vever H, Lnkholm A V, et al. Gene expression profiling identifies FYN as an important molecule in tamoxifen resistance and a predictor of early recurrence in patients treated with endocrine therapy [J]. Oncogene, 2014, 34(15): 1919
[8] Ashburner M, Ball C A, Blake J A, et al. Gene Ontology: tool for the unification of biology [J]. Nat Genet, 2000, 25(1): 25
[9] Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes [J]. Nucleic Acids Res, 2000, 28(1):27
[10] Liu X, Yongzhen M A, Yang W, et al. Identification of therapeutic targets for breast cancer using biological informatics methods [J]. Mol Med Report, 2015, 12(2): 1789
[11] Saito R, Smoot M E, Ono K, et al. A travel guide to Cytoscape plugins [J]. Nat Methods, 2012, 9(11): 1069
[12] Chang A K, Huijian W U. The role of AIB1 in breast cancer [J]. Oncol Lett, 2012, 4(4): 588
[13] Brychtova V, Vojtesek B, Hrstka R. Anterior gradient 2: a novel player in tumor cell biology [J]. Cancer Lett, 2011, 304(1): 1
[14] Su Q, Hu S, Gao H, et al. Role of AIB1 for Tamoxifen Resistance in Estrogen Receptor-Positive Breast Cancer Cells[J]. Oncology, 2008, 75(3-4): 159
[15] Ignatov A, Ignatov T, Weissenborn C, et al. G-protein-coupled estrogen receptor GPR30 and tamoxifen resistance in breast cancer [J]. Breast Cancer Res Treat, 2011, 128(2): 457
[16] Jung Y C, Han S, Hua L, et al. Kazinol-E is a specific inhibitor of ERK that suppresses the enrichment of a breast cancer stem-like cell population[J]. Biochem Biophys Res Commun, 2016, 470(2): 294
[17] Chen Q G, Zhou W, Han T, et al. MiR-378 suppresses prostate cancer cell growth through downregulation of MAPK1 in vitro and in vivo [J]. Tumour Biol, 2016, 37(2): 1
[18] Zou Y, Deng W, Wang F, et al. A novel somatic MAPK1 mutation in primary ovarian mixed germ cell tumors [J]. Oncol Rep, 2015, 35(2): 725
[19] Generali D, Buffa F M, Berruti A, et al. Phosphorylated ERalpha, HIF-1alpha, and MAPK signaling as predictors of primary endocrine treatment response and resistance in patients with breast cancer [J]. J Clin Oncol, 2009, 27(2): 227
[20] Leeuw R D, Neefjes J, Michalides R. A role for estrogen receptor Phosphorylation in the Resistance to Tamoxifen[J]. Int J Breast Cancer, 2011, 2011(2): p232435
[21] Wu J I. Diverse functions of ATP-dependent chromatin remodeling complexes in development and cancer [J]. Acta Biochim Biophys Sin, 2012, 44(1): 54
[22] Wu Q, Madany P, Akech J, et al. The SWI/SNF ATPases Are Required for Triple Negative Breast Cancer Cell Proliferation[J]. J Cell Physiol, 2015, 230(11): 2683
[23] Wang S, Zhang B, Faller D V. BRG1/BRM and prohibitin are required for growth suppression by estrogen antagonists[J]. EMBO J, 2004, 23(11): 2293
[24] Jeselsohn R, Buchwalter G, Angelis C D, et al. ESR1 mutations - mechanism for acquired endocrine resistance in breast cancer [J]. Nat Rev Clin Oncol, 2015, 12(10): 573
[25] Jeselsohn R, Yelensky R, Buchwalter G, et al. Emergence of constitutively active estrogen receptor-α mutations in pretreated advanced estrogen receptor positive breast cancer[J]. Clin Cancer Res, 2014, 20(7): 1757
[26] Kim S, Lee J, Lee S K, et al. Protein kinase C-alpha downregulates estrogen receptor-alpha by suppressing c-Jun phosphorylation in estrogen receptor-positive breast cancer cells [J]. Oncol Rep, 2014, 31(3): 1423
[27] Nakashima S. Protein Kinase Cα (PKCα): Regulation and Biological Function [J]. J Biochem, 2008, 132(5): 669
[28] Kim S, Han J, Lee S K, et al. Berberine suppresses the TPA-induced MMP-1 and MMP-9 expressions through the inhibition of PKC-α in breast cancer cells [J]. J Surg Res, 2012, 176(1): e21
[29] Hashizume C, Kobayashi A, Wong R W. Down-modulation of nucleoporin RanBP2/Nup358 impaired chromosomal alignment and induced mitotic catastrophe [J]. Cell Death Dis, 2013, 4(10): e854
[30] Lee S E, Kang S Y, Takeuchi K, et al. Identification of RANBP2-ALK fusion in ALK positive diffuse large B-cell lymphoma [J]. Hematol Oncol, 2014, 32(4): 221
[31] Miyauchi Y, Yogosawa S, Honda R, et al. Sumoylation of Mdm2 by protein inhibitor of activated STAT (PIAS) and RanBP2 enzymes [J]. J Biol Chem, 2002, 277(51): 50131
[32] Packham S, Warsito D, Lin Y, et al. Nuclear translocation of IGF-1R via p150Glued and an importin-|[beta]||[sol]|RanBP2-dependent pathway in cancer cells[J]. Oncogene, 2015, 34(17): 2227
[1]朱悦,张诗武,张丹芳,等.TA2小鼠自发乳腺癌血清蛋白质组学研究[J].天津医科大学学报,2013,19(05):373.
[2]刘 营,孙保存,刘铁菊,等.AURKA蛋白激酶在三阴乳腺癌干细胞形成血管拟态中的实验研究[J].天津医科大学学报,2013,19(06):437.
LIU Ying,SUN Bao-cun,LIU Tie-ju,et al.Experimental study of AURKA protein kinase in the formation of vascular mimicry in triple-negative breast cancer stem cells[J].Journal of Tianjin Medical University,2013,19(01):437.
[3]伦淑敏.HOXA5基因真核表达质粒的构建及在乳腺癌细胞中的功能研究[J].天津医科大学学报,2014,20(05):337.
LUN Shu-min. Construction of HOXA5 eukaryotic expression plasmid of and its biological significance in breast cancer cells[J].Journal of Tianjin Medical University,2014,20(01):337.
[4]伦淑敏.肌细胞增强因子2A基因真核表达质粒的构建及对乳腺癌细胞MCF-7增殖能力的影响[J].天津医科大学学报,2014,20(06):429.
LUN Shu-min.Construction of myocyte enhancer factor 2A eukaryotic expression plasmid and effects on cell proliferation in breast cancer cell line MCF7[J].Journal of Tianjin Medical University,2014,20(01):429.
[5]孙秀梅,张 飞,田 然,等.Nanog表达上调促进乳腺癌细胞MCF-7的增殖和侵袭[J].天津医科大学学报,2014,20(06):421.
SUN Xiu-mei,ZHANG Fei,TIAN Ran,et al.Up-regulation of Nanog promotes cell proliferation and invasion in breast cancer cells MCF-7[J].Journal of Tianjin Medical University,2014,20(01):421.
[6]张 洁,张 飞,冀 为,等. SHP2不同突变体对乳腺癌细胞的迁移和侵袭能力的影响[J].天津医科大学学报,2015,21(02):93.
ZHANG Jie,ZHANG Fei,JI Wei,et al. Effect of different SHP2 mutants on breast cancer cell migration and invasion[J].Journal of Tianjin Medical University,2015,21(01):93.
[7]蔡 隽. FOXQ1稳定表达乳腺癌细胞系的建立及鉴定[J].天津医科大学学报,2015,21(04):292.
CAI Jun.Establishment and identification of cell lines with stable expression of FOXQ1 in MDA-MB-231-luc[J].Journal of Tianjin Medical University,2015,21(01):292.
[8]蔡 隽 综述,冯玉梅 审校.叉头框转录因子调控乳腺癌生物学特性的研究进展[J].天津医科大学学报,2015,21(05):455.
[9]任宗娜.沉默Notch4基因对乳腺癌细胞系MDA-MB-231增殖和迁移侵袭能力的影响[J].天津医科大学学报,2015,21(06):469.
REN Zong-na.Inhibition effect of?silencing?? Notch4 gene on the proliferation and migration and invasion activity of? breast cancer cell line?MDA-MB-231[J].Journal of Tianjin Medical University,2015,21(01):469.
[10]周岩,宋伟杰,张飞,等.人附睾蛋白4在乳腺癌发生发展中的机制研究[J].天津医科大学学报,2015,21(06):466.
ZHOU Yan,SONG Wei-jie,ZHANG Fei,et al.Mechanism of human epididymis protein 4 in development and progression of breast cancer[J].Journal of Tianjin Medical University,2015,21(01):466.
[11]柴慈曼,杨绍时.乳腺癌他莫昔芬耐药相关基因及通路的筛选[J].天津医科大学学报,2018,24(06):501.
CHAI Ci-man,YANG Shao-shi.Identification of keygenes and pathwaysoftamoxifen-resistancein breast cancer[J].Journal of Tianjin Medical University,2018,24(01):501.