|本期目录/Table of Contents|

[1]张文帆,杨金豪,陈爽,等.宫颈癌细胞PAX1基因甲基化的CRISPR靶向调控系统的构建[J].天津医科大学学报,2022,28(05):491-496.
 Construction of CRISPR-mediated targeted regulation system for PAX methylation in cervical cancer cell.Construction of CRISPR-mediated targeted regulation system for PAX1 methylation in cervical cancer cell[J].Journal of Tianjin Medical University,2022,28(05):491-496.
点击复制

宫颈癌细胞PAX1基因甲基化的CRISPR靶向调控系统的构建(PDF)
分享到:

《天津医科大学学报》[ISSN:1006-8147/CN:12-1259/R]

卷:
28卷
期数:
2022年05期
页码:
491-496
栏目:
基础医学
出版日期:
2022-09-20

文章信息/Info

Title:
Construction of CRISPR-mediated targeted regulation system for PAX1 methylation in cervical cancer cell
文章编号:
1006-8147(2022)05-0491-06
作者:
张文帆1杨金豪1陈爽1时淑娟2王蓉1
(1.天津医科大学医学检验学院,300203 天津;2.天津医科大学基础医学院解剖教研室,300070 天津)
Author(s):
Construction of CRISPR-mediated targeted regulation system for PAX1 methylation in cervical cancer cell
(1.Department of Laboratory Medicine,Tianjin Medical University,Tianjin 300203,China;2.Department of Human Anatomy and Histology,Tianjin Medical University,Tianjin 300070,China)
关键词:
宫颈癌PAX1DNA甲基化CRISPR调控
Keywords:
cervical cancerPAX1DNA methylationCRIPSR regulation
分类号:
R737.3
DOI:
-
文献标志码:
A
摘要:
目的:建立PAX1基因甲基化的CRISPR靶向调控系统。方法:首先,通过甲基化特异性PCR(MSP)测定宫颈癌细胞系(CaSki,SiHa)及正常细胞(人胚肾细胞HEK293T)中 PAX1基因启动子的DNA甲基化水平;通过荧光定量PCR(RT-PCR)和免疫印迹(Western blotting)分别检测上述细胞系的mRNA及蛋白表达。然后,在PAX1高甲基化的宫颈癌细胞共转染sgRNA(single guide RNA)和dCas9-Tet1质粒,采用焦磷酸测序(Pyrosequencing)和 RT-PCR分别检测其基因甲基化和表达水平的改变。最后,结合生物信息学预测和RT-PCR评估该CRISPR系统的脱靶效应。结果:与HEK293T细胞相比,宫颈癌细胞的PAX1基因启动子呈现高甲基化,且其mRNA(CaSki:t=9.13;SiHa:t=12.31;P<0.05)和蛋白表达水平(CaSki:t=16.72;SiHa:t=11.81;P<0.05)均降低。在CaSki及SiHa细胞系中,去甲基化sgRNA3(act-sgRNA3)组调控最显著,其PAX1基因的甲基化水平在CaSki和SiHa细胞系中分别下降了22.21%(t=6.65,P<0.05)、19.62%(t=17.00,P<0.05),其mRNA表达水平均显著上调(P<0.05)。且该系统脱靶效应基因的表达差异均小于2倍。结论:本研究成功建立了PAX1基因甲基化的CRISPR靶向调控系统,可有效的降低其甲基化水平,增强其内源性的表达水平。
Abstract:
Objective: To establish a CRISPR-mediated targeted regulation system for PAX1 methylation. Methods: Firstly,methylation-specific PCR(MSP) was performed to examinate the DNA methylation level of PAX1 promoter in cervical cancer cells (CaSki,SiHa) and normal cells(human embryonic kidney cell,HEK293T). The mRNA and protein expression of these cell lines was detected by real time quantitative PCR(RT-PCR) and Western blotting. Secondly,single guide RNA(sgRNA) and dCas9-Tet1 plasmid were co-transfected into PAX1 hypermethylated cells,and the changes in methylation and expression were detected via Pyrosequencing and RT-PCR,respectively. Finally,the off-target effect of the CRISPR system was evaluated by bioinformatics prediction and RT-PCR. Results: Compared with HEK293T cells,the methylation level of PAX1 promoter was hypermethylated in cervical cancer cells,and the expression levels of mRNA(CaSki: t=9.13,SiHa: t=12.31,P<0.05) and protein(CaSki: t=16.72,SiHa: t=11.81,P<0.05) was decreased. In CaSki and SiHa cell lines,demethylated sgRNA3(act sgRNA3) group had the most significant regulation. The methylation level of PAX1 promoter in the sgRNA3 group (act-sgRNA3) was decreased by 22.21% (t=6.65,P<0.05) and 19.62% (t=17.00,P<0.05) in CaSki and SiHa cell lines,respectively,and the mRNA expression levels were significantly up-regulates(P<0.05). The difference of off-target effect on gene expression was less than 2-fold. Conclusion: Our study successfully establishes CRISPR-mediated targeted regulation system for PAX1 methylation,which effectively downregulats the methylation level by increasing the endogenous expression level.

参考文献/References:

[1] LAMBERT S A,JOLMA A,CAMPITELLI L F,et al. The human transcription factors[J]. Cell,2018,172(4):650-465.
[2] BALLING R,HELWIG U,NADEAU J,et al. Pax genes and skeletal development[J].Ann N Y Acad Sci,1996,785:27-33.
[3] CHALEPAKIS G,FRITSCH R,FICKENSCHER H,et al. The molecular basis of the undulated/Pax-1 mutation[J]. Cell,1991,66(5):873-884.
[4] WALLIN J,EIBEL H,NEUB?譈SER A,et al. Pax1 is expressed during development of the thymus epithelium and is required for normal T-cell maturation[J]. Development,1996,122(1):23-30.
[5] SU D,ELLIS S,NAPIER A,et al. Hoxa3 and pax1 regulate epithelial cell death and proliferation during thymus and parathyroid organogenesis[J]. Dev Biol,2001,236(2): 316-329.
[6] LAI H C,LIN Y W,HUANG T H,et al. Identification of novel DNA methylation markers in cervical cancer[J]. Int J Cancer,2008,123(1):161-167.
[7] SU H Y,LAI H C,LIN Y W,et al. An epigenetic marker panel for screening and prognostic prediction of ovarian cancer[J]. Int J Cancer,2009,124(2): 387-393.
[8] SULAIMAN L,JUHLIN C C,NILSSON I L,et al. Global and gene-specific promoter methylation analysis in primary hyperparathyroidism [J]. Epigenetics,2013,8(6):646-655.
[9] SUN R,JUAN Y C,SU Y F,et al. Hypermethylated PAX1 and ZNF582 genes in the tissue sample are associated with aggressive progression of oral squamous cell carcinoma[J]. J Oral Pathol Med,2020,49(8):751-760.
[10] GUERRERO-PRESTON R,MICHAILIDI C,MARCHIONNI L,et al. Key tumor suppressor genes inactivated by "greater promoter" methylation and somatic mutations in head and neck cancer[J]. Epigenetics,2014,9(7): 1031-1046.
[11] TANG L,LIOU Y L,WAN Z R,et al. Aberrant DNA methylation of PAX1,SOX1 and ZNF582 genes as potential biomarkers for esophageal squamous cell carcinoma[J]. Biomed Pharmacother,2019,120:109488.
[12] CHAVEZ A,SCHEIMAN J,VORA S,et al. Highly efficient Cas9-mediated transcriptional programming[J]. Nat Methods,2015,12(4):326-328.
[13] THAKORE P I,D'IPPOLITO A M,SONG L,et al. Highly specific epigenome editing by CRISPR-Cas9 repressors for silencing of distal regulatory elements[J]. Nat Methods,2015,12(12): 1143-1149.
[14] LIU X S,WU H,JI X,et al. Editing DNA methylation in the mammalian genome[J]. Cell,2016,167(1):233-247.e17.
[15] LIU H,WEI Z,DOMINGUEZ A,et al. CRISPR-ERA: a comprehensive design tool for CRISPR-mediated gene editing,repression and activation[J]. Bioinformatics,2015,31(22): 3676-3678.
[16] ZHAO J,CAO H,ZHANG W,et al. SOX14 hypermethylation as a tumour biomarker in cervical cancer[J]. BMC Cancer,2021,21(1): 675.
[17] CRADICK T J,QIU P,LEE C M,et al. COSMID:a web-based tool for identifying and validating CRISPR/Cas off-target sites[J]. Mol Ther Nucleic Acids,2014,3(12):e214.
[18] XIA C,XU X,ZHAO X,et al. Effectiveness and cost-effectiveness of eliminating cervical cancer through a tailored optimal pathway:a modeling study[J]. BMC Med,2021,19(1): 62.
[19] LUAN T,HUA Q,LIU X,et al. PAX1 Methylation as a potential biomarker to predict the progression of cervical intraepithelial neoplasia:a meta-analysis of related studies[J]. Int J Gynecol Cancer,2017,27(7):1480-1488.
[20] JONES P A,ISSA J P,BAYLIN S. Targeting the cancer epigenome for therapy[J]. Nat Rev Genet,2016,17(10): 630-641.
[21] KARDOONI H,GONZALEZ-GUALDA E,STYLIANAKIS E,et al. CRISPR-mediated reactivation of DKK3 expression attenuates TGF-beta signaling in prostate cancer[J]. Cancers (Basel),2018,10(6):165.
[22] ZHANG Y,CHEN F Q,SUN Y H,et al. Effects of DNMT1 silencing on malignant phenotype and methylated gene expression in cervical cancer cells [J]. J Exp Clin Cancer Res,2011,30(1):98.
[23] NUNEZ J K,CHEN J,POMMIER G C,et al. Genome-wide programmable transcriptional memory by CRISPR-based epigenome editing [J]. Cell,2021,184(9):2503-2519.e17.
[24] GAN Y,CAO C,LI A,et al. Silencing of the TRIM58 gene by aberrant promoter methylation is associated with a poor patient outcome and promotes cell proliferation and migration in clear cell renal cell carcinoma[J]. Front Mol Biosci,2021,8:655126.
[25] YANG T,LIU X,KUMAR S K,et al. Decoding DNA methylation in epigenetics of multiple myeloma[J]. Blood Rev,2022,51:100872.
[26] LIU C,LI H,LIN J,et al. Genome-wide characterization of DNA demethylase genes and their association with salt response in pyrus [J]. Genes(Basel),2018,9(8):135-138.
[27] MAROUFI F,MAALI A,ABDOLLAHPOUR-ALITAPPEH M,et al. CRISPR-mediated modification of DNA methylation pattern in the new era of cancer therapy[J]. Epigenomics,2020,12(20):1845-1859.
[28] PATTANAYAK V,LIN S,GUILINGER J P,et al. High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity[J]. Nat Biotechnol,2013,31(9): 839-843.
[29] LIU X S,WU H,KRZISCH M,et al. Rescue of fragile X syndrome neurons by DNA methylation editing of the FMR1 gene[J]. Cell,2018,172(5): 979-992.e6.
[30] FU Y,FODEN J A,KHAYTER C,et al. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells[J].Nat Biotechnol,2013,31(9): 822-826.
[31] NAEEM M,MAJEED S,HOQUE M Z,et al. Latest developed strategies to minimize the off-target effects in CRISPR-Cas-mediated genome editing [J]. Cells,2020,9(7):1608.
[32] RICKARD A M,PETEK L M,MILLER D G. Endogenous DUX4 expression in FSHD myotubes is sufficient to cause cell death and disrupts RNA splicing and cell migration pathways[J]. Hum Mol Genet,2015,24(20):5901-5914.
[33] LIU G,LIU S,LI X,et al. Genetic polymorphisms of PAX1 are functionally associated with different PUMC types of adolescent idiopathic scoliosis in a northern Chinese Han population[J]. Gene,2019,688:215-220.

相似文献/References:

[1]李晶晶,赵卫东,王德华.72例宫颈癌术后并发症及卵巢功能分析[J].天津医科大学学报,2014,20(01):63.
[2]崔丽阳,岳天孚.高危型HPV持续感染的影响因素探讨[J].天津医科大学学报,2014,20(03):209.
 CUI Li-yang,YUE Tian-fu.Investigation on factors for persistent high-risk human papilloma virus infection[J].Journal of Tianjin Medical University,2014,20(05):209.
[3]孙 艳,齐 政,王德华,等.miR-186通过靶定CEA抑制宫颈癌细胞转移[J].天津医科大学学报,2016,22(04):288.
 SUN Yan,QI Zheng,WANG De-hua,et al.miR-186 inhibits cervical cancer migration by targetting CEA[J].Journal of Tianjin Medical University,2016,22(05):288.
[4]李 娜,李洪林,尹利荣.HPV E6/E7 mRNA与YAP在宫颈癌中的表达与相关性研究[J].天津医科大学学报,2018,24(04):307.
 LI Na,LI Hong-lin,YIN Li-rong.HPV E6/E7 mRNA and YAP expression and their correlation in cervical carcinoma[J].Journal of Tianjin Medical University,2018,24(05):307.
[5]曲首辉,鲍志敏,刘荣欣.TCT、活检病理在宫颈上皮瘤变及早期宫颈癌诊断中的价值分析[J].天津医科大学学报,2018,24(04):360.
[6]陈 辉,樊茹佳,丁继侠.宫颈癌组织中Foxm1、ANGPTL4蛋白表达及临床意义[J].天津医科大学学报,2019,25(05):510.
 CHEN Hui,FAN Ru-jia,DING Ji-xia.Expression and clinical significance of Foxm1 and ANGPTL4 protein in cervical cancer tissues[J].Journal of Tianjin Medical University,2019,25(05):510.
[7]闫晓芳,谢 虹,汤 华.miR-3685通过靶向CTTN抑制宫颈癌细胞的迁移、侵袭及生长[J].天津医科大学学报,2020,26(01):8.
 YAN Xiao-fang,XIE Hong,TANG Hua.miR-3685 inhibits migration, invasion and growth of cervical cancer cells by targeting CTTN[J].Journal of Tianjin Medical University,2020,26(05):8.
[8]白丽丽,汤华.TNF-α诱导的circMAN1A2促进宫颈癌细胞的迁移、侵袭和增殖[J].天津医科大学学报,2020,26(02):103.
 BAI Li-li,TANG Hua.TNF-α-induced circMAN1A2 promotes migration, invasion and proliferation of cervical cancer cells[J].Journal of Tianjin Medical University,2020,26(05):103.
[9]赵敬,杨金豪,张文帆,等.2009—2020年中国女性生殖道支原体、衣原体和人乳头瘤病毒感染与宫颈癌发生相关性的Meta分析[J].天津医科大学学报,2021,27(04):396.
 ZHAO Jing,YANG Jin-hao,ZHANG Wen-fan,et al.A meta-analysis of association between Mycoplasma,Chlamydia infection and Human papillomavirus infection in female genital tract and cervical cancer in China from 2009 to 2020[J].Journal of Tianjin Medical University,2021,27(05):396.
[10]赵敬,杨金豪 综述,常艳敏,等.中国宫颈癌DNA甲基化标志物的研究进展[J].天津医科大学学报,2021,27(05):545.

备注/Memo

备注/Memo:
基金项目 国家自然科学基金青年基金(81601836);天津市科技计划项目技术创新引导专项基金(21YDTPJC00720)
作者简介 张文帆(1998-),女,硕士在读,妇科肿瘤的表观遗传;通信作者:王蓉,E-mail: wangrong825@tmu.edu.cn。
更新日期/Last Update: 2022-09-20