|本期目录/Table of Contents|

[1]白国杰,万业达.Bp-MRI灰度直方图在鉴别移行带前列腺癌与良性前列腺增生中的应用价值[J].天津医科大学学报,2021,27(01):47-51.
 BAI Guo-jie,WAN Ye-da.The value of Bp-MRI grayscale histogram in distinguishing prostate cancer from benign prostatic hyperplasia in transition zone[J].Journal of Tianjin Medical University,2021,27(01):47-51.
点击复制

Bp-MRI灰度直方图在鉴别移行带前列腺癌与良性前列腺增生中的应用价值(PDF)
分享到:

《天津医科大学学报》[ISSN:1006-8147/CN:12-1259/R]

卷:
27卷
期数:
2021年01期
页码:
47-51
栏目:
临床医学
出版日期:
2021-01-20

文章信息/Info

Title:
The value of Bp-MRI grayscale histogram in distinguishing prostate cancer from benign prostatic hyperplasia in transition zone
文章编号:
1006-8147(2021)01-0047-05
作者:
白国杰1万业达2
1.天津医科大学研究生院,天津 300070;2.天津市天津医院放射科,天津300211
Author(s):
BAI Guo-jie1WAN Ye-da2
1.Graduate School,Tianjin Medical University,Tianjin 300070,China;2. Department of Radiology, Tianjin Hospital,Tianjin 300211,China
关键词:
灰度直方图前列腺癌前列腺增生移行带纹理分析
Keywords:
histogramprostate cancerbenign prostatic hyperplasiatransition zonetexture analysis
分类号:
R445.3+R730.45
DOI:
-
文献标志码:
A
摘要:
目的:探讨双参数磁共振成像(Bp-MRI)灰度直方图在鉴别移行带前列腺癌(PCa)与良性前列腺增生(BPH)中的价值。方法:回顾性分析经病理证实的移行带PCa患者43例与BPH患者52例。T2WI和ADC图像上,利用MaZda软件手动勾画感兴趣区(ROI),进行灰度直方图分析,提取均值、方差、偏度、峰度、百分位数9个直方图纹理特征,对纹理特征进行统计学分析,获得有意义的纹理特征参数,并绘制受试者工作特征(ROC)曲线,以评价其鉴别移行带PCa与BPH的价值。结果:BPH组ADC均值、偏度、各百分位数均高于PCa组,差异均有统计学意义(t=-12.155~5.022,均P<0.05),方差、峰度差异无统计学意义(均P>0.05)。BPH组T2WI均值、方差、第10百分位数、第50百分位数、第90百分位数、第99百分位数均高于PCa组,差异均有统计学意义(t=-6.618~-2.181,均P<0.05),偏度、峰度、第1百分位数差异均无统计学意义(均P>0.05)。ADC均值、偏度、第1百分位数、第10百分位数、第50百分位数、第90百分位数、第99百分位数曲线下面积(AUC)差异均有统计学意义(均P<0.05);T2WI均值、方差、第10百分位数、第50百分位数、第90百分位数、第99百分位数AUC差异均有统计学意义(均P<0.05)。其中,ADC均值的AUC最大,为0.963,以149.29为阈值时,敏感度为90.7%,特异度为92.3%。结论:Bp-MRI灰度直方图分析可以作为鉴别PCa与BPH的重要辅助手段。
Abstract:
Objective: To explore the value of two-parameter magnetic resonance imaging(Bp-MRI) grayscale histogram in distinguishing prostate cancer(PCa) from benign prostatic hyperplasia(BPH) in transitional zone. Methods:A total of 43 patients with PCa and 52 patients with BPH confirmed by pathology were retrospective analyzed. On T2WI and ADC images, the region of interest(ROI) was manually drawn using MaZda software,grayscale histogram analysis was performed,mean,variance,skewness,kurtosis,percentile 9 histogram texture features were extracted.The texture features were statistically analyzed to obtain meaningful texture feature parameters,and the receiver operating characteristic curve(ROC) was drawn to evaluate the value of identifying the transition zone of PCa and BPH. Results: The mean,skewness,and percentiles of ADC in BPH were statistically significant higher than those in PCa(t=-12.155~5.022,all P<0.05),and there was no statistical difference in variance and kurtosis(all P>0.05). T2WI mean,variance,10th percentile,50th percentile,90th percentile,99th percentile in BPH were statistically significant higher than those in PCa(t=-6.618~-2.181,all P<0.05),and skewness,kurtosis,difference in 1 percentile was not statistically significant(all P>0.05). The ADC mean,skewness,1st percentile,10th percentile,50th percentile,90th percentile,99th percentile of AUC differences were statistically significant(all P<0.05);T2WI mean,variance,10th percentile,50th percentile,90th percentile,99th percentile of AUC differences were statistically significant(all P<0.05). Among them,the average AUC of the ADC was the largest at 0.963. When 149.29 was used as the threshold,the sensitivity was 90.7% and the specificity was 92.3%.Conclusion:Bp-MRI grayscale histogram analysis can be used as an important auxiliary method to distinguish PCa and BPH.

参考文献/References:

[1] Bates A,Miles K. Prostate-specific membrane antigen PET/MRI validation of Mr textural analysis for detection of transition zone prostate cancer[J]. Eur Radiol,2017,27(12):5290
[2] Liu X H, Zhou L P,Peng W J,et al. Differentiation of central gland prostate cancer from benign prostatic hyperplasia using monoexponential and biexponential diffusion-weighted imaging[J]. Magn Reson Imaging,2013,31(8):1318
[3] 吕青青,张勇,程敬亮,等. ADC全域直方图在鉴别胶质母细胞瘤和脑单发转移瘤中的应用价值[J].中国临床医学影像杂志,2018, 29(12):844
[4] 徐圆,段钰,尚松安,等. MRI灰度直方图鉴别脑高级别胶质瘤、原发性淋巴瘤与转移瘤[J]. 实用放射学杂志,2019,35(11):1732
[5] 黄荟玉,张勇,程敬亮,等. T2WI肿瘤最大层面直方图分析鉴别腮腺多形性腺瘤与恶性肿瘤[J].中国介入影像与治疗学,2019, 16(8):464
[6] 刘洁,程敬亮,张勇. ADC值直方图分析方法鉴别ⅠB期和Ⅱ期宫颈癌的应用初探[J]. 中国医疗设备,2020,35(1):68
[7] 解添淞,马晓茜,童彤,等. 应用CT纹理分析评价胰腺癌透明质酸含量[J]. 中国癌症杂志,2020,30(3):224.
[8] 姜雨薇,刘颖,俞璐,等. 扩散峰度成像直方图分析在前列腺癌诊断及Gleason评分评估中的价值[J]. 中华放射学杂志,2019, 53(10):844
[9] Reischauer C,Patzwahl R,Koh D M,et al. Texture analysis of apparent diffusion coefficient maps for treatment response assessment in prostate cancer bone metastases-A pilot study[J]. Eur J Radiol,2018,101(101):184
[10] Patel N,Henry A,Scarsbrook A. The value of Mr textural analysis in prostate cancer[J]. Clin Radiol,2019,74(11):876
[11] Kuess P,Andrzejewski P,Nilsson D,et al. Association between pathology and texture features of multi parametric MRI of the prostate[J]. Phys Med Biol,2017,62(19):7833
[12] Turkbey B,Rosenkrantz A B,Haider M,et al. Prostate imaging reporting and data system version 2.1:2019 update of prostate imaging reporting and data system version 2[J]. Eur Urol,2019,76(3):340
[13] 高峰.基于MRI图像纹理分析在鉴别前列腺增生和前列腺癌的应用价值研究[D]. 沈阳:中国医科大学,2017
[14] Barrett T,Lawrence E M,Priest A N,et al. Repeatability of diffusion-weighted MRI of the prostate using whole lesion ADC values,skew and histogram analysis[J]. Eur J Radiol,2019,110(110):22
[15] Wibmer A,Hricak H,Gondo T,et al. Haralick texture analysis of prostate MRI: utility for differentiating non-cancerous prostate from prostate cancer and differentiating prostate cancers with different Gleason scores[J]. Eur Radiol,2015,25(10):2840
[16] Hameed M,Ganeshan B,Shur J,et al. Correction to: the clinical utility of prostate cancer heterogeneity using texture analysis of multiparametric MRI[J]. Int Urol Nephrol,2019,51(7):1171

相似文献/References:

[1]魏强,齐灿,罗飞,等.转移性去势抵抗性前列腺癌患者多西他赛化疗的预后分析[J].天津医科大学学报,2013,19(05):390.
[2]杨帮东,姜行康,齐 灿,等.尿液中PCA3评分对前列腺癌早期诊断的临床意义[J].天津医科大学学报,2013,19(06):487.
 YANG Bang-dong,JIANG Xing-kang,QI Can,et al.Clinical significance of urinary PCA3 score to diagnose prostate cancer[J].Journal of Tianjin Medical University,2013,19(01):487.
[3]刘利维,刘春雨. MicroRNAs 与前列腺癌的表观遗传学研究进展[J].天津医科大学学报,2014,20(01):74.
[4]王 超,余泉峰,徐 勇,等.经直肠超声造影诊断前列腺癌的临床分析[J].天津医科大学学报,2014,20(05):375.
 WANG Chao,YU Quan-feng,XU Yong,et al.Clinical analysis of contrast-enhanced transrectal ultrasonography for the diagnosis of prostate cancer[J].Journal of Tianjin Medical University,2014,20(01):375.
[5]张晓会,张志宏,徐 勇,等.合并症对局限性或局部晚期前列腺癌患者早期生存的影响[J].天津医科大学学报,2014,20(05):379.
 ZHANG Xiao-hui,ZHANG Zhi-hong,XU Yong,et al. Influence of complications on early survival of patients with localized or locally advanced prostate cancer[J].Journal of Tianjin Medical University,2014,20(01):379.
[6]盛 镔,张 蒙,马鹏德,等.核糖体蛋白L37在前列腺癌中的表达及临床意义[J].天津医科大学学报,2015,21(05):401.
 SHENG Bin,ZHANG Meng,MA Peng-de,et al.Expression of ribosomal protein L37 in prostate cancer and its clinical significance[J].Journal of Tianjin Medical University,2015,21(01):401.
[7]管明秀,周云丽,王 萌,等.TuM2-PK,tPSA,fPSA/tPSA和PSAD对PSA灰区前列腺癌诊断价值的比较[J].天津医科大学学报,2016,22(02):140.
 GUAN Ming-xiu,ZHOU Yun-li,WANG-Meng,et al.Diagnostic implication of TuM2-PK, tPSA, fPSA/tPSA ratio and PSAD for prostate cancer in PSA gray area[J].Journal of Tianjin Medical University,2016,22(01):140.
[8]李 江,张恩龙,赵 阳,等.前列腺癌靶向磁共振成像和光热治疗的实验研究[J].天津医科大学学报,2017,23(02):93.
 LI Jiang,ZHANG En-long,ZHAO Yang,et al.?Experimental research of targeted magnetic resonance imaging and photo thermal therapy for prostate cancer [J].Journal of Tianjin Medical University,2017,23(01):93.
[9]张一然,潘盼,连振鹏,等.磁共振扫描对经直肠超声引导前列腺穿刺活检的影响[J].天津医科大学学报,2017,23(02):99.
 ZHANG Yi-ran,PAN Pan,LIAN Zhen-peng,et al.Effect of magnetic resonance imaging scan on the?transrectal ultrasound?prostate biopsy[J].Journal of Tianjin Medical University,2017,23(01):99.
[10]薄志强,孙桂江,王 丽,等.CtBP2异常表达对前列腺癌PC3细胞增殖效应影响的研究[J].天津医科大学学报,2017,23(02):103.
 BO Zhi-qiang,SUNGui-jiang,WANG Li,et al.Effect of abnormal expression of CtBP2 on the proliferation of prostate cancer cell line PC3[J].Journal of Tianjin Medical University,2017,23(01):103.

备注/Memo

备注/Memo:
作者简介 白国杰(1979-),男,医师,硕士在读,研究方向:盆腔MRI影像诊断;通信作者:万业达,E-mail:yd_wan@sina.com。
更新日期/Last Update: 2021-01-10