|本期目录/Table of Contents|

[1]陈傲,邱帅,李悦,等.功能化外泌体对实验性自身免疫性脑脊髓炎小鼠治疗的研究[J].天津医科大学学报,2024,30(03):212-217.[doi:10.20135/j.issn.1006-8147.2024.03.0212]
 CHEN Ao,QIU Shuai,LI Yue,et al.Study of functionalized exosomes for treating experimental autoimmune encephalomyelitis in mice[J].Journal of Tianjin Medical University,2024,30(03):212-217.[doi:10.20135/j.issn.1006-8147.2024.03.0212]
点击复制

功能化外泌体对实验性自身免疫性脑脊髓炎小鼠治疗的研究(PDF)
分享到:

《天津医科大学学报》[ISSN:1006-8147/CN:12-1259/R]

卷:
30卷
期数:
2024年03期
页码:
212-217
栏目:
外泌体研究专题
出版日期:
2024-05-20

文章信息/Info

Title:
Study of functionalized exosomes for treating experimental autoimmune encephalomyelitis in mice
文章编号:
1006-8147(2024)03-0212-06
作者:
陈傲邱帅李悦尹海芳
(天津医科大学基础医学院细胞生物学系,天津 300070)
Author(s):
CHEN Ao QIU Shuai LI Yue YIN Haifang
(Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China)
关键词:
多发性硬化实验性自身免疫性脑脊髓炎外泌体293F悬浮细胞髓鞘少突胶质细胞糖蛋白
Keywords:
multiple sclerosis experimental autoimmune encephalomyelitis exosomes 293F suspension cells myelin oligodendrocyte glycoprotein
分类号:
Q291
DOI:
10.20135/j.issn.1006-8147.2024.03.0212
文献标志码:
A
摘要:
目的:探究负载髓鞘少突胶质细胞糖蛋白(MOG)的293F细胞来源的外泌体(EXO)对实验性自身免疫性脑脊髓炎(EAE)小鼠的治疗效果。方法:利用Western 印迹、透射电子显微镜以及Nanosight对超速离心分离的293F细胞上清EXO进行表征;利用流式细胞术和共聚焦显微镜检测细胞摄取EXO的生物学功能;利用EXO特异性锚定肽EXP将MOG抗原肽修饰于EXO表面,流式细胞术检测EXO与MOG抗原肽的结合效率(EXOMOG);活体成像检测EXOMOG的体内分布;利用小鼠的临床评分、体重变化以及收样时小鼠脾细胞中调节性T细胞变化和脊髓染色,评估EXOMOG对EAE小鼠的治疗效果;利用组织形态学染色检测EXOMOG治疗对各组小鼠不良反应。结果:超速离心可成功分离EXO,且分离的EXO具有被细胞摄取的生物学功能;EXP外泌体锚定肽介导MOG抗原肽高效负载于EXO表面,且不影响EXO的体内分布;在EAE小鼠上测试结果显示:与未治疗组和MOG组相比,EXOMOG组小鼠治疗后第24天的体重显著增加(P< 0.05),行为学评分显著降低(P< 0.05),且治疗后小鼠脾脏中CD4+CD25+Treg细胞显著增高(P< 0.05);病理染色结果表明:EXOMOG组小鼠的各组织器官未见明显病理学改变。结论:EXOMOG能够有效缓解小鼠EAE疾病进展且未检测到相关不良反应。
Abstract:
Objective: To explore the therapeutic effect of exosomes(EXO) derived from 293F cells loaded with myelin oligodendrocyte glycoprotein(MOG) on experimental autoimmune encephalomyelitis(EAE) mice. Methods: Characterization of EXO from the culture supernatant of 293F cells separated by ultracentrifugation using Western blotting, transmission electron microscopy, and nano-sight. Flow cytometry and confocal microscopy were used to detect the biological function of cells taking up EXO. MOG antigen peptides were loaded on the surface of EXO via exosomal anchor peptide-EXP. Flow cytometry was used to detect the binding efficiency of EXO and MOG antigen peptide(EXOMOG) and small animal imaging was applied to examine the distribution of EXOMOG. The therapeutic effect of EXOMOG on EAE mice was evaluated by the changes of clinical score, weight, regulatory T cells in spleen cells and spinal cord staining at the time of sample collection. The toxic of EXOMOG on mice in each group were detected by tissue morphology staining. Results: EXO could be successfully separated by ultracentrifugation, and the EXO had the biological function of being taken up by cells. The anchor peptide of EXP exosomes mediated the efficient loading of MOG antigen peptides on the surface of EXO without altering the in vivo distribution of EXO. The test results on EAE mice showed that compared to the untreated group and MOG alone group, EXOMOG treatment significantly increased the weight on the 24th day after induction(P<0.05). Behavioral scores significantly declined in EAE mice treated with EXOMOG compared with untreated controls(P<0.05). The immuno-tolerogenic CD4+CD25+ Treg cells in the spleen of mice significantly increased after treatment(P<0.05). The pathological examination revealed that there were no significant pathological changes in the tissues and organs of the EXOMOG group mice. Conclusion: EXOMOG are able to effectively prevent the progression of EAE disease in mice without any drug-associated toxicity.

参考文献/References:

[1] JIE Z,KO C J,WANG H,et al. Microglia promote autoimmune inflammation via the noncanonical NF-κB pathway[J]. Sci Adv,2021, 7(36): eabh0609.
[2] WING K,SAKAGUCHI S. Regulatory T cells exert checks and balances on self tolerance and autoimmunity[J]. Nat Immunol,2010,11(1): 7-13.
[3] ROSENBLUM M D,GRATZ I K,PAW J S,et al. Treating human autoimmunity: current practice and future prospects[J]. Sci Transl Med,2012,4(125): 125sr1.
[4] LESLIE M. Immunology. Regulatory T cells get their chance to shine[J]. Science,2011,332(6033): 1020-1021.
[5] CARAMBIA A,FREUND B,SCHWINGE D,et al. Nanoparticle-based autoantigen delivery to Treg-inducing liver sinusoidal endothelial cells enables control of autoimmunity in mice[J]. J Hepatol,2015,62(6): 1349-1356.
[6] ZHAO X,WU D,MA X,et al. Exosomes as drug carriers for cancer therapy and challenges regarding exosome uptake[J]. Biomed Pharmacother,2020,128: 110237.
[7] ZHANG Y,LIU Y,LIU H,et al. Exosomes: biogenesis,biologic function and clinical potential[J]. Cell Biosci,2019,9: 19.
[8] VAN DER MEEL R,FENS M H,VADER P,et al. Extracellular vesicles as drug delivery systems: lessons from the liposome field[J]. J Control Release,2014,195: 72-85.
[9] GAO X,RAN N,DONG X,et al. Anchor peptide captures,targets,and loads exosomes of diverse origins for diagnostics and therapy[J]. Sci Transl Med,2018,10(444):eaat0195.
[10] CONSTANTINESCU C S,FAROOQI N,O′BRIEN K,et al. Experimental autoimmune encephalomyelitis (EAE) as a model for multiple sclerosis (MS)[J]. Br J Pharmacol,2011,164(4): 1079-1106.
[11] GETTS D R,MARTIN A J,MCCARTHY D P,et al. Microparticles bearing encephalitogenic peptides induce T-cell tolerance and ameliorate experimental autoimmune encephalomyelitis[J]. Nat Bio-technol,2012,30(12): 1217-1224.
[12] LUKSIC F,MIJAKOVAC A,JOSIPOVIC G,et al. Long-term culturing of freestyle 293-F cells affects immunoglobulin G glycome composition[J]. Biomolecules,2023,13(8):1245.
[13] SHI K,LI H,CHANG T,et al. Bone marrow hematopoiesis drives multiple sclerosis progression[J]. Cell,2022,185(13): 2234-2247.
[14] KRIENKE C,KOLB L,DIKEN E,et al. A noninflammatory mRNA vaccine for treatment of experimental autoimmune encephalomyelitis[J]. Science,2021,371(6525): 145-153.
[15] MA J,ZHANG Y,TANG K,et al. Reversing drug resistance of soft tumor-repopulating cells by tumor cell-derived chemotherapeutic microparticles[J]. Cell Res,2016,26(6): 713-727.
[16] THOMSON A W,KNOLLE P A. Antigen-presenting cell function in the tolerogenic liver environment[J]. Nat Rev Immunol,2010,10(11): 753-766.
[17] WU T,LIU Y,CAO Y,et al. Engineering macrophage exosome disguised biodegradable nanoplatform for enhanced sonodynamic therapy of glioblastoma[J]. Adv Mater,2022,34(15): e2110364.
[18] KIMIZ-GEBOLOGLU I,ONCEL S S. Exosomes: large-scale production,isolation,drug loading efficiency,and biodistribution and uptake[J]. J Control Release,2022,347: 533-543.
[19] LIN M J,SVENSSON-ARVELUND J,LUBITZ G S,et al. Cancer vaccines: the next immunotherapy frontier[J]. Nat Cancer,2022, 3(8): 911-926.
[20] LUTH S,HUBER S,SCHRAMM C,et al. Ectopic expression of ne-ural autoantigen in mouse liver suppresses experimental autoimmune neuroinflammation by inducing antigen-specific Tregs[J]. J Clin Invest,2008,118(10): 3403-3410.
[21] 张杨,游阿彬,齐寒,等. 负载化疗药物的外泌体对肝癌的靶向治疗研究[J]. 天津医科大学学报,2021,27(3): 229-233.
[22] 赵佳莹,申艳佳,杨冉,等. 多发性硬化药物研发中动物模型研究进展及应用[J]. 中国药理学通报,2022,38(6): 801-806.

相似文献/References:

[1]李 丹.31例多发性硬化患者T淋巴细胞亚群及相关细胞因子 的检测[J].天津医科大学学报,2019,25(01):80.
 LI Dan.Detection of Tlymphocyte subsets and related cytokines in 31 cases of multiple sclerosis[J].Journal of Tianjin Medical University,2019,25(03):80.
[2]樊茉丽 综述,杨春生 审校.多发性硬化与不宁腿综合征[J].天津医科大学学报,2020,26(06):585.
[3]杨 扬,杨 洁.丹参酮ⅡA对EAE小鼠临床表现及外周Treg细胞的影响[J].天津医科大学学报,2017,23(01):17.
 YANG Yang,YANG Jie.Effects of TanshinonⅡA on the clinical manifestation and peripheral Treg of EAE mice[J].Journal of Tianjin Medical University,2017,23(03):17.

备注/Memo

备注/Memo:
基金项目 中央支持地方高校发展基金(116003/XK010302)
作者简介 陈傲(1997-),男,硕士在读,研究方向:靶向治疗;通信作者:尹海芳, E-mail:haifangyin@tmu.edu.cn。
更新日期/Last Update: 2024-05-20