|本期目录/Table of Contents|

[1]王雅蕾,王靖怡 综述,齐丽莎 审校.微环境在卵巢癌发生发展中的作用[J].天津医科大学学报,2020,26(03):288-291,295.
点击复制

微环境在卵巢癌发生发展中的作用(PDF)
分享到:

《天津医科大学学报》[ISSN:1006-8147/CN:12-1259/R]

卷:
26卷
期数:
2020年03期
页码:
288-291,295
栏目:
综述
出版日期:
2020-06-10

文章信息/Info

Title:
-
文章编号:
1006-8147(2020)03-0288-04
作者:
王雅蕾王靖怡 综述 齐丽莎 审校
(天津医科大学肿瘤医院病理科,国家肿瘤临床医学研究中心, 天津市“肿瘤防治”重点实验室,天津市恶性肿瘤临床医学研究中心, 天津 300060)
Author(s):
-
关键词:
卵巢癌微环境转移外泌体
Keywords:
-
分类号:
R737.31
DOI:
-
文献标志码:
A
摘要:
肿瘤微环境由基质细胞、免疫细胞、周围血管、淋巴管及细胞外基质(ECM)中的可溶性因子、胞外囊泡等组成,它与肿瘤细胞的共同进化促进了肿瘤进展。由于微环境成分相对稳定,靶向微环境的治疗有望在肿瘤治疗中取得突破。本文就卵巢癌细胞及其微环境之间的相互作用及微环境促进卵巢癌发生、发展的研究进展做一阐述。
Abstract:
-

参考文献/References:

[1] Siegel R L, Miller K D, Jemal A. Cancer statistics, 2019[J]. CA Cancer J Clin, 2019, 69(1):7
[2] Chen F, Zhuang X E, Lin L Y, et al. New horizons in tumor microenvironment biology: challenges and opportunities[J]. BMC Med, 2015, 13(1):278
[3] Von Strandmann E P, Reinartz S, Wager U A. Tumor-host cell interactions in ovarian cancer: pathways to therapy failure[J]. Trends Cancer, 2017, 3(2):137
[4] Langyel E. Ovarian cancer development and metastasis[J]. Am J Pathol, 2010, 177(3): 1053
[5] Tomasek J J, Gabbiani G, Hinz B, et al. Myofibroblasts and mechano-regulation of connective tissue remodelling[J]. Nat Rev Mol Cell Biol, 2002, 3(5):349
[6] Raghu K, Michael Z.Fibroblasts in cancer[J]. Nat Rev Cancer, 2006, 6(5):392
[7] Yuan Z, Huijuan T, Jing C, et al. Ovarian cancer-associated fibroblasts contribute to epithelial ovarian carcinoma metastasis by promoting angiogenesis, lymphangiogenesis and tumor cell invasion[J]. Cancer Lett, 2011, 303(1):47
[8] Yao Q, Qu X, Yang Q, et al. CLIC4 mediates TGF-beta1-induced fibroblast-to-myofibroblast transdifferentiation in ovarian cancer[J].Oncol Rep, 2009, 22(3):541
[9] Yeung T L, Leung C S, Wong K K, et al. TGF-beta modulates ovarian cancer invasion by upregulating CAF-derived versican in the tumor microenvironment[J]. Cancer Res, 2013, 73(16):5016
[10] Thuwajit C, Ferraresi A, Titone R A, et al.The metabolic cross-talk between epithelial cancer cells and stromal fibroblasts in ovarian cancer progression: Autophagy plays a role[J]. Med Res Rev, 2018, 38(4):1235
[11] Straussman R, Morikawa T, Shee K, et al. Tumour micro-environment elicits innate resistance to RAF inhibitors through HGF secretion[J]. Nature, 2012, 487(748):500
[12] Sun Y. Translational horizons in the tumor microenvironment: harnessing breakthroughs and targeting cures[J]. Med Res Rev, 2015, 35(2):408
[13] Wang W M, Kryczek I, Dostal L, et al. Effector T cells abrogate stroma-mediated chemoresistance in ovarian cancer[J]. Cell, 2016, 165(5):1092
[14] Spaeth E L, Dembinski J L, Sasser A K, et al. Mesenchymal stem cell transition to tumor-associated fibroblasts contributes to fibrovascular network expansion and tumor progression[J]. PLoS One, 2009, 4(4):e4992
[15] Zhang Y L, Dong W H, Wang J J, et al. Human omental adipose-derived mesenchymal stem cell-conditioned medium alters the proteomic profile of epithelial ovarian cancer cell lines in vitro[J]. Onco Targets Ther, 2017,10:1655
[16] Ding D C, Liu H W, Chu T Y. Interleukin-6 from ovarian mesenchymal stem cells promotes proliferation, sphere and colony formation and tumorigenesis of an ovarian cancer cell line SKOV3[J]. J Cancer, 2016, 7(13):1815
[17] Pasquier J, Gosset M, Geyl C A, et al. CCL2/CCL5 secreted by the stroma induce IL-6/PYK2 dependent chemoresistance in ovarian cancer[J]. Mol Cancer, 2018,17(1):47
[18] Gao T, Yu Y, Cong Q, et al. Human mesenchymal stem cells in the tumour microenvironment promote ovarian cancer progression: the role of platelet-activating factor[J]. BMC Cancer, 2018, 18(1):999
[19] Mclean K, Gong Y, Choi Y, et al. Human ovarian carcinoma–associated mesenchymal stem cells regulate cancer stem cells and tumorigenesis via altered BMP production[J]. J Clin Invest, 2011, 121(8):3206
[20] Jiang J, Chen W, Zhuang R, et al. The effect of endostatin mediated by human mesenchymal stem cells on ovarian cancer cells in vitro[J].J Cancer Res Clin Oncol, 2010, 136(6):873
[21] Hu W H, Wang J, He X F, et al. Human umbilical blood mononuclear cell-derived mesenchymal stem cells serve as interleukin-21 gene delivery vehicles for epithelial ovarian cancer therapy in nude mice[J]. Biotechnol Appl Biochem, 2011, 58(6):397
[22] Sica A, Larghi P, Mancino A, et al. Macrophage polarization in tumour progression[J]. Semin Cancer Biol, 2008, 18(5):349
[23] Goossens P, Rodriguez-Vita J, Etzerodt A, et al. Membrane cholesterol efflux drives tumor-associated macrophage reprogramming and tumor progression[J]. Cell Metab, 2019,29(6):1376
[24] Yin M Z, Li X, Tan S, et al.Tumor-associated macrophages drive spheroid formation during early transcoelomic metastasis of ovarian cancer[J]. J Clin Invest, 2016, 126(11):4157
[25] Yang Y L, Andersson P, Hosaka K, et al. The PDGF-BB-SOX7 axis-modulated IL-33 in pericytes and stromal cells promotes metastasis through tumour-associated macrophages[J]. Nat Commun, 2016, 7:11385
[26] Ke X, Zhang S P, Wu M, et al. Tumor-associated macrophages promote invasion via toll-like receptors signaling in patients with ovarian cancer[J]. Int Immunopharmacol, 2016,40:184
[27] Zhu Q Y, Wu X L, Wu Y E, et al. Interaction between Treg cells and tumor-associated macrophages in the tumor microenvironment of epithelial ovarian cancer[J]. Oncol Rep, 2016, 36(6):3472
[28] Chen X, Ying X, Wang X J, et al. Exosomes derived from hypoxic epithelial ovarian cancer deliver microRNA-940 to induce macrophage M2 polarization[J]. Oncol Rep, 2017, 38(1):522
[29] Zhou J R, Li X D, Wu X L, et al. Exosomes released from tumor-associated macrophages transfer miRNAs that induce a Treg/Th17 cell imbalance in epithelial ovarian cancer[J]. Cancer Immunol Res, 2018, 6(12):1578
[30] Reinartz S, Finkernagel F, Adhikary T A, et al. A transcriptome-based global map of signaling pathways in the ovarian cancer microenvironment associated with clinical outcome[J]. Genome Biol, 2016, 17(1):108
[31] Mittal D, Gubin M M, Schreiber R D, et al. New insights into cancer immunoediting and its three component phases--elimination, equilibrium and escape[J]. Curr Opin Immunol, 2014, 27(1):16
[32] Melero I, Rouzaut A, Motz G T, et al. T-cell and NK-cell infiltration into solid tumors: a key limiting factor for efficacious cancer immunotherapy[J]. Cancer Discov, 2014, 4(5):522
[33] Motz G T, Santoro S P, Wang L, et al. Tumor endothelium FasL establishes a selective immune barrier promoting tolerance in tumors[J]. Nat Med, 2014, 20(6):607
[34] Higuchi T, Flies D B, Marjon N A, et al. CTLA-4 blockade synergizes therapeutically with PARP inhibition in BRCA1-deficient ovarian cancer[J]. Cancer Immunol Res, 2015, 3(11):1257
[35] Topalian S L, Drake C G, Pardoll D M. Targeting the PD-1/B7-H1(PD-L1) pathway to activate anti-tumor immunity[J]. Curr Opin Immunol, 2012, 24(2):207
[36] Hwang W T, Adams S F, Tahirovic E, et al. Prognostic significance of tumor-infiltrating T cells in ovarian cancer: A meta-analysis[J]. Gynecol Oncol, 2012, 124(2):192
[37] Abiko K, Mandai M, Hamanishi J, et al. PD-L1 on tumor cells is induced in ascites and promotes peritoneal dissemination of ovarian cancer through CTL dysfunction[J]. Clin Cancer Res, 2013, 19(6):1363
[38] Varga A, Piha-Paul S A, Ott P A, et al. Antitumor activity and safety of pembrolizumab in patients (pts) with PD-L1 positive advanced ovarian cancer: Interim results from a phase Ib study[J]. J Clin Oncol, 2015, 33(15, S):194
[39] Wu M, Chen X, Lou J, et al. Changes in regulatory T cells in patients with ovarian cancer undergoing surgery: Preliminary results[J].Int Immunopharmacol, 2017, 47:244
[40] Waldhauer I, Steinle A. NK cells and cancer immunosurveillance[J]. Oncogene, 2008, 27(45):5932
[41] Mukherjee S, Pal M, Mukhopadhyay S, et al. VEGF expression to support targeted therapy in ovarian surface epithelial neoplasms[J]. J Clin Diagn Res, 2017, 11(4):C43
[42] Kuerti S, Oliveira-Ferrer L, Milde-Langosch K, et al. VEGF-C expression attributes the risk for lymphatic metastases to ovarian cancer patients[J]. Oncotarget, 2017, 8(26):43218
[43] Song F F, Chen Q, Rao W, et al. OVA66 promotes tumour angiogenesis and progression through enhancing autocrine VEGF-VEGFR2 signalling[J]. EBioMedicine, 2019, 41:156
[44] Li J L, Sainson R C, Oon C E, et al. DLL4-Notch signaling mediates tumor resistance to anti-VEGF therapy in vivo[J]. Cancer Res, 2011, 71(18):6073
[45] Deng W M, Gu X, Lu Y, et al. Down-modulation of TNFSF15 in ovarian cancer by VEGF and MCP-1 is a pre-requisite for tumor neovascularization[J]. Angiogenesis, 2012, 15(1):71
[46] Han L, Xu J, Xu Q, et al. Extracellular vesicles in the tumor microenvironment: Therapeutic resistance, clinical biomarkers, and targeting strategies[J]. Med Res Rev, 2017, 37(6, SI):1318
[47] Worzfeld T, Von Strandmann E P, Huber M A, et al. The unique molecular and cellular microenvironment of ovarian cancer[J]. Front Oncol, 2017, 7(Suppl 5):24
[48] Yokoi A, Yoshioka Y, Yamamoto Y, et al. Malignant extracellular vesicles carrying MMP1 mRNA facilitate peritoneal dissemination in ovarian cancer[J]. Nat Commun, 2017, 8:14470
[49] Kelleher J, Balu-Iyer S, Loyall J A, et al. Extracellular vesicles present in human ovarian tumor microenvironments induce a phosphatidylserine-dependent arrest in the T-cell signaling cascade[J]. Cancer Immunol Res, 2015, 3(11):1269
[50] Szajnik M, Czystowska M, Szczepanski M J, et al. Tumor-derived microvesicles induce, expand and up-regulate biological activities of human regulatory T cells (Treg)[J]. PLoS One, 2010, 5(7):e11469
[51] Nakamura K, Sawada K, Yoshimura A, et al. Clinical relevance of circulating cell-free microRNAs in ovarian cancer[J]. Mol Cancer,2016, 15(1):48
[52] Kanlikilicer P, Rashed M H, Bayraktar R A, et al. Ubiquitous release of exosomal tumor suppressor miR-6126 from ovarian cancer cells[J]. Cancer Res, 2016, 76(24):7194
[53] Au Yeung C L, Co N N, Tsuruga T, et al. Exosomal transfer of stroma-derived miR21 confers paclitaxel resistance in ovarian cancer cells through targeting APAF1[J]. Nat Commun, 2016, 7:11150

相似文献/References:

[1]申彦,张新莹,师宜荃,等.Glut-1、HIF-1α及P53在卵巢癌中的表达及意义[J].天津医科大学学报,2013,19(05):383.
[2]周 闻,杨 臻,刘 民,等.抑癌基因ST7L对卵巢癌细胞增殖、细胞周期和裸鼠移植瘤的影响[J].天津医科大学学报,2016,22(05):373.
 ZHOU Wen,YANG Zhen,LIU Min,et al.Effects of ST7L on cell proliferation, cell cycle in ovarian cancer and tumour xenografts in nude mice[J].Journal of Tianjin Medical University,2016,22(03):373.
[3]范 丹,宋文静,张艳辉,等.PRRX1的表达对卵巢癌血管生成拟态形成及患者预后的影响[J].天津医科大学学报,2018,24(01):1.
 FAN Dan,SONG Wen-jing,ZHANG Yan-hui,et al.Effect of PRRX1 expression on VM formation and prognosis in ovarian cancer[J].Journal of Tianjin Medical University,2018,24(03):1.
[4]郑凯源综述,付蔚华审校.肿瘤微环境与免疫抑制性细胞的研究进展[J].天津医科大学学报,2018,24(02):182.
[5]徐灵灵,牛秀珑,张宏健,等.IL-17A促进卵巢癌顺铂耐药的体外机制探讨[J].天津医科大学学报,2018,24(03):192.
 XU Ling-ling,NIU Xiu-long,ZHANG Hong-jian,et al.Study on the underlying mechanisms of IL-17A promoting the cisplatin-based resistance of ovarian cancer[J].Journal of Tianjin Medical University,2018,24(03):192.
[6]李岩,牛秀珑,郁春艳,等.IL-17A可以促进卵巢癌的腹腔转移[J].天津医科大学学报,2020,26(06):518.
 LI Yan,NIU Xiu-long,YU Chun-yan,et al.IL-17A promotes intraperitoneal metastasis of ovarian cancer[J].Journal of Tianjin Medical University,2020,26(03):518.
[7]李广宁 综述,曹文枫 审校.女性生殖系统双原发癌的研究进展[J].天津医科大学学报,2021,27(06):655.
[8]沈洋洋,牛秀珑,郁春艳,等.外源性IL-6 通过STAT3 通路促进卵巢癌细胞对顺铂 耐药[J].天津医科大学学报,2022,28(03):266.
 SHEN Yang-yang,NIU Xiu-long,YU Chun-yan,et al.Exogenous IL-6 promotes cisplatin resistance of ovarian cancer through STAT3 pathway[J].Journal of Tianjin Medical University,2022,28(03):266.
[9]郑小燕,郁春艳,刘俊汝,等.IL-17A对卵巢癌进展的影响及机制研究[J].天津医科大学学报,2023,29(02):148.
 ZHENG Xiao-yan,YU Chun-yan,LIU Jun-ru,et al.Effect and mechanism of IL-17A on the progression of ovarian cancer[J].Journal of Tianjin Medical University,2023,29(03):148.

备注/Memo

备注/Memo:
基金项目 国家自然科学基金资助项目(81402420),天津市应用基础与前沿技术研究计划青年项目(15JCQNJC12400),天津市卫生计生委重点攻关项目(16KG25)
作者简介 王雅蕾(1977-),女,主管技师,硕士,研究方向:肿瘤复发转移机制;通信作者:齐丽莎,E-mail:lqi01@tmu.edu.cn。
更新日期/Last Update: 2020-06-13