|本期目录/Table of Contents|

[1]张丽梅,贾莉莉 综 述,喻文立 审 校.外泌体在病毒性肝炎、肝硬化和肝癌中的作用研究进展[J].天津医科大学学报,2019,25(03):305-308,312.
点击复制

外泌体在病毒性肝炎、肝硬化和肝癌中的作用研究进展(PDF)
分享到:

《天津医科大学学报》[ISSN:1006-8147/CN:12-1259/R]

卷:
25卷
期数:
2019年03期
页码:
305-308,312
栏目:
综述
出版日期:
2019-05-20

文章信息/Info

Title:
-
文章编号:
1006-8147(2019)03-0305-05
作者:
张丽梅1贾莉莉2 综 述喻文立2 审 校
(1.天津医科大学第一中心临床学院,天津300192;2.天津市第一中心医院麻醉科,天津300192)
Author(s):
-
关键词:
外泌体病毒性肝炎肝硬化肝癌
Keywords:
-
分类号:
R575
DOI:
-
文献标志码:
A
摘要:
外泌体是由细胞分泌的直径30~100 nm圆形或椭圆形的膜性囊泡,携带蛋白质、脂质和RNA等多种功能成分,在细胞间信息传递中承担着重要作用。近年来研究发现外泌体可通过血液循环转运至邻近或远处特定器官,参与体内重要的生理病理过程,在细胞通讯、细胞迁移、血管新生、免疫反应和肿瘤细胞生长等方面发挥着重要作用,影响疾病的发生发展。本文主要对外泌体在肝脏疾病尤其是病毒性肝炎、肝硬化和肝癌中的作用进行简要综述。外泌体在肝脏疾病中的作用机制亟待进一步研究,如何将外泌体应用于临床肝脏疾病的诊断治疗将成为未来研究的重点。
Abstract:
-

参考文献/References:

[1] Bhat S P, Gangalum R K. Secretion of alphaB-Crystallin via exosomes: New clues to the function of human retinal pigment epithelium[J]. Commun Integr Biol, 2011, 4(6): 739
[2] Valadi H, Ekstrom K, Bossios A, et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells[J]. Nature Cell Biology, 2007, 9(6): 654
[3] Lee H D, Koo B H, Kim Y H, et al. Exosome release of ADAM15 and the functional implications of human macrophage-derived ADAM15 exosomes[J]. FASEB J, 2012, 26(7): 3084
[4] 张敏,张晨光,丁卫.外泌体及其在肿瘤诊疗中的意义[J].生理科学进展, 2014,45:372
[5] Lee W M. Hepatitis B virus infection[J]. N Engl J Med, 1997, 337(24): 1733
[6] Mohd Hanafiah K, Groeger J, Flaxman A D, et al. Global epidemiology of hepatitis C virus infection: new estimates of age-specific antibody to HCV seroprevalence[J]. Hepatology, 2013, 57(4): 1333
[7] Yang Y, Han Q, Hou Z, et al. Exosomes mediate hepatitis B virus (HBV) transmission and NK-cell dysfunction[J]. Cell Mol Immunol, 2017, 14(5): 465
[8] Kapoor N R, Chadha R, Kumar S, et al. The HBx gene of hepatitis B virus can influence hepatic microenvironment via exosomes by transferring its mRNA and protein[J]. Virus Res, 2017, 240: 166
[9] Zhao X, Wu Y, Duan J, et al. Quantitative proteomic analysis of exosome protein content changes induced by hepatitis B virus in Huh-7 cells using SILAC labeling and LC-MS/MS[J]. J Proteome Res, 2014, 13(12): 5391
[10] Kwon H, Lok A S. Hepatitis B therapy[J]. Nat Rev Gastroenterol Hepatol, 2011, 8(5): 275
[11] Li J, Liu K, Liu Y, et al. Exosomes mediate the cell-to-cell transmission of IFN-alpha-induced antiviral activity[J]. Nat Immunol, 2013, 14(8): 793
[12] Masciopinto F, Giovani C, Campagnoli S, et al. Association of hepatitis C virus envelope proteins with exosomes[J]. Eur J Immunol, 2004, 34(10): 2834
[13] Ramakrishnaiah V, Thumann C, Fofana I, et al. Exosome-mediated transmission of hepatitis C virus between human hepatoma Huh7.5 cells[J]. Proc Natl Acad Sci U S A, 2013, 110(32): 13109
[14] Bukong T N, Momen-Heravi F, Kodys K, et al. Exosomes from hepatitis C infected patients transmit HCV infection and contain replication competent viral RNA in complex with Ago2-miR122-HSP90[J]. PLoS Pathog, 2014, 10(10): e1004424
[15] Dreux M, Garaigorta U, Boyd B, et al. Short-range exosomal transfer of viral RNA from infected cells to plasmacytoid dendritic cells triggers innate immunity[J]. Cell Host Microbe, 2012, 12(4): 558
[16] Zhang S, Kodys K, Babcock G J, et al. CD81/CD9 tetraspanins aid plasmacytoid dendritic cells in recognition of hepatitis C virus-infected cells and induction of interferon-alpha[J]. Hepatology, 2013, 58(3): 940
[17] Giugliano S, Kriss M, Golden-Mason L, et al. Hepatitis C virus infection induces autocrine interferon signaling by human liver endothelial cells and release of exosomes, which inhibits viral replication[J]. Gastroenterol, 2015, 148(2): 392
[18] Harwood N M, Golden-Mason L, Cheng L, et al. HCV-infected cells and differentiation increase monocyte immunoregulatory galectin-9 production[J]. J Leukoc Biol, 2016, 99(3): 495
[19] Ji X J, Ma C J, Wang J M, et al. HCV-infected hepatocytes drive CD4+ CD25+ Foxp3+ regulatory T-cell development through the Tim-3/Gal-9 pathway[J]. Eur J Immunol, 2013, 43(2): 458
[20] Nagashima S, Jirintai S, Takahashi M, et al. Hepatitis E virus egress depends on the exosomal pathway, with secretory exosomes derived from multivesicular bodies[J]. J Gen Virol, 2014, 95(Pt 10): 2166
[21] Chapuy-Regaud S, Dubois M, Plisson-Chastang C, et al. Characterization of the lipid envelope of exosome encapsulated HEV particles protected from the immune response[J]. Biochimie, 2017, 141: 70
[22] Friedman S L. Mechanisms of hepatic fibrogenesis[J]. Gastroenterology, 2008, 134(6): 1655
[23] Chen L, Charrier A L, Leask A, et al. Ethanol-stimulated differentiated functions of human or mouse hepatic stellate cells are mediated by connective tissue growth factor[J]. J Hepatol, 2011, 55(2): 399
[24] Huang G, Brigstock D R. Regulation of hepatic stellate cells by connective tissue growth factor[J]. Front Biosci (Landmark Ed), 2012, 17: 2495
[25] Chen L, Charrier A, Zhou Y, et al. Epigenetic regulation of connective tissue growth factor by MicroRNA-214 delivery in exosomes from mouse or human hepatic stellate cells[J]. Hepatology, 2014, 59(3): 1118
[26] Chen L, Chen R, Velazquez V M, et al. Fibrogenic signaling is suppressed in hepatic stellate cells through targeting of connective tissue growth factor(CCN2) by cellular or exosomal microRNA-199a-5p[J]. Am J Pathol, 2016, 186(11): 2921
[27] Chen L, Chen R, Kemper S, et al. Suppression of fibrogenic signaling in hepatic stellate cells by Twist1-dependent microRNA-214 expression: Role of exosomes in horizontal transfer of Twist1[J]. Am J Physiol Gastrointest Liver Physiol, 2015, 309(6): G491
[28] Devhare P B, Sasaki R, Shrivastava S, et al. Exosome-mediated intercellular communication between hepatitis C virus-infected hepatocytes and hepatic stellate cells[J]. J Virol, 2017, 91(6)
[29] Wang R, Ding Q, Yaqoob U, et al. Exosome adherence and internalization by hepatic stellate cells triggers sphingosine 1-phosphate-dependent migration[J]. J Biol Chem, 2015, 290(52): 30684
[30] Torre LA, Bray F, Siegel R L, et al. Global cancer statistics, 2012[J]. CA Cancer J Clin, 2015, 65(2): 87
[31] Kogure T, Lin W L, Yan I K, et al. Intercellular nanovesicle-mediated microRNA transfer: a mechanism of environmental modulation of hepatocellular cancer cell growth[J]. Hepatology, 2011, 54(4): 1237
[32] Birchmeier C, Birchmeier W, Gherardi E, et al. Met, metastasis, motility and more[J]. Nat Rev Mol Cell Biol, 2003, 4(12): 915
[33] He M, Qin H, Poon T C, et al. Hepatocellular carcinoma-derived exosomes promote motility of immortalized hepatocyte through transfer of oncogenic proteins and RNAs[J]. Carcinogenesis, 2015, 36(9): 1008
[34] Hoshino A, Costa-Silva B, Shen T L, et al. Tumour exosome integrins determine organotropic metastasis[J]. Nature, 2015, 527(7578): 329
[35] Huang A, Dong J, Li S, et al. Exosomal transfer of vasorin expressed in hepatocellular carcinoma cells promotes migration of human umbilical vein endothelial cells[J]. Int J Biol Sci, 2015, 11(8): 961
[36] Conigliaro A, Costa V, Lo Dico A, et al. CD90+ liver cancer cells modulate endothelial cell phenotype through the release of exosomes containing H19 lncRNA[J]. Mol Cancer, 2015, 14: 155
[37] Zhao H, Yang L, Baddour J, et al. Tumor microenvironment derived exosomes pleiotropically modulate cancer cell metabolism[J]. Elife, 2016, 5: e10250
[38] Zhang Z, Li X, Sun W, et al. Loss of exosomal miR-320a from cancer-associated fibroblasts contributes to HCC proliferation and metastasis[J]. Cancer Lett, 2017, 397: 33
[39] Wei J X, Lv L H, Wan Y L, et al. Vps4A functions as a tumor suppressor by regulating the secretion and uptake of exosomal microRNAs in human hepatoma cells[J]. Hepatology, 2015, 61(4): 1284
[40] Wang H, Hou L, Li A, et al. Expression of serum exosomal microRNA-21 in human hepatocellular carcinoma[J]. Biomed Res Int, 2014, 2014: 864894
[41] Liu W H, Ren L N, Wang X, et al. Combination of exosomes and circulating microRNAs may serve as a promising tumor marker complementary to alpha-fetoprotein for early-stage hepatocellular carcinoma diagnosis in rats[J]. J Cancer Res Clin Oncol, 2015, 141(10): 1767
[42] Sohn W, Kim J, Kang S H, et al. Serum exosomal microRNAs as novel biomarkers for hepatocellular carcinoma[J]. Exp Mol Med, 2015, 47: e184
[43] Yu J, Han J, Zhang J, et al. The long noncoding RNAs PVT1 and uc002mbe.2 in sera provide a new supplementary method for hepatocellular carcinoma diagnosis[J]. Medicine (Baltimore), 2016, 95(31): e4436
[44] Rao Q, Zuo B, Lu Z, et al. Tumor-derived exosomes elicit tumor suppression in murine hepatocellular carcinoma models and humans in vitro[J]. Hepatology, 2016, 64(2): 456
[45] Lu Z, Zuo B, Jing R, et al. Dendritic cell-derived exosomes elicit tumor regression in autochthonous hepatocellular carcinoma mouse models[J]. J Hepatol, 2017, 67(4): 739
[46] Xiong L, Zhen S, Yu Q, et al. HCV-E2 inhibits hepatocellular carcinoma metastasis by stimulating mast cells to secrete exosomal shuttle microRNAs[J]. Oncol Lett, 2017, 14(2): 2141
[47] Xiao W, Dong W, Zhang C, et al. Effects of the epigenetic drug MS-275 on the release and function of exosome-related immune molecules in hepatocellular carcinoma cells[J]. Eur J Med Res, 2013, 18: 61
[48] Ko S F, Yip H K, Zhen Y Y, et al. Adipose-derived mesenchymal stem cell exosomes suppress hepatocellular carcinoma growth in a rat model: apparent diffusion coefficient, natural killer T-Cell responses, and histopathological features[J]. Stem Cells Int, 2015, 2015: 853506
[49] Lou G, Song X, Yang F, et al. Exosomes derived from miR-122-modified adipose tissue-derived MSCs increase chemosensitivity of hepatocellular carcinoma[J]. J Hematol Oncol, 2015, 8: 122
[50] Wang F, Li L, Piontek K, et al. Exosome miR-335 as a novel therapeutic strategy in hepatocellular carcinoma[J]. Hepatology, 2018, 67(3): 940
[51] Qi H, Liu C, Long L, et al. Blood exosomes endowed with magnetic and targeting properties for cancer therapy[J]. ACS Nano, 2016, 10(3): 3323
[52] Liu W, Hu J, Zhou K, et al. Serum exosomal miR-125b is a novel prognostic marker for hepatocellular carcinoma[J]. Onco Targets Ther, 2017, 10: 3843
[53] Zhang H, Deng T, Liu R, et al. Exosome-delivered EGFR regulates liver microenvironment to promote gastric cancer liver metastasis[J]. Nat Commun, 2017, 8: 15016

相似文献/References:

[1]王雅蕾,王靖怡 综述,齐丽莎 审校.微环境在卵巢癌发生发展中的作用[J].天津医科大学学报,2020,26(03):288.
[2]潘大宇,宁广智,冯世庆.雪旺细胞外泌体影响胶质瘢痕形成修复小鼠脊髓损伤的实验研究[J].天津医科大学学报,2020,26(05):397.
 PAN Da-yu,NING Guang-zhi,FENG Shi-qing.Schwann cell-derived exosomes promote functional recovery of spinal cord injury in mice via affecting glial scar formation[J].Journal of Tianjin Medical University,2020,26(03):397.
[3]张杨,游阿彬,齐寒,等.负载化疗药物的外泌体对肝癌的靶向治疗研究[J].天津医科大学学报,2021,27(03):229.
 ZHANG Yang,YOU A-bin,QI Han,et al.Tumor-derived exosomes mediate targeted therapy in hepatocellular carcinoma mice[J].Journal of Tianjin Medical University,2021,27(03):229.
[4]王敏,邢逸,徐海楠,等.M2型巨噬细胞外泌体对皮肤创面愈合影响的探究[J].天津医科大学学报,2022,28(04):343.
 WANG Min,XING Yi,XU Hai-nan,et al.The effect of M2 macrophage-derived exosomes on skin wound healing[J].Journal of Tianjin Medical University,2022,28(03):343.
[5]吴颖杰,耿梦缘,汪晶,等.不同冻干保护剂在外泌体储存中的研究[J].天津医科大学学报,2022,28(04):353.
 WU Ying-jie,GENG Meng-yuan,WANG Jing,et al.Study on the effect of different lyoprotectants on exosomes[J].Journal of Tianjin Medical University,2022,28(03):353.
[6]索睿,郝天旭,茹仙古丽·吾买尔 综述,等.间充质干细胞来源的外泌体治疗哮喘的研究进展[J].天津医科大学学报,2023,29(06):673.

备注/Memo

备注/Memo:
基金项目 天津市卫生行业重点攻关项目(16KG101);天津市自然科学基金项目(18JCYBJC27500)
作者简介 张丽梅(1994-),女,硕士在读,研究方向:麻醉学;通信作者:喻文立,E-mail:yzxyuwenli@163.com。
更新日期/Last Update: 2019-07-03