|本期目录/Table of Contents|

[1]刘佳,赵泽满,刘雅涵,等.丁酸盐对炎症性肠病保护作用的实验研究[J].天津医科大学学报,2025,31(01):36-40.[doi:10.20135/j.issn.1006-8147.2025.01.0036]
 LIU Jia,ZHAO Zeman,LIU Yahan,et al.Experimental study on the protective effect of butyrate on inflammatory bowel disease[J].Journal of Tianjin Medical University,2025,31(01):36-40.[doi:10.20135/j.issn.1006-8147.2025.01.0036]
点击复制

丁酸盐对炎症性肠病保护作用的实验研究(PDF)
分享到:

《天津医科大学学报》[ISSN:1006-8147/CN:12-1259/R]

卷:
31卷
期数:
2025年01期
页码:
36-40
栏目:
基础医学
出版日期:
2025-01-20

文章信息/Info

Title:
Experimental study on the protective effect of butyrate on inflammatory bowel disease
文章编号:
1006-8147(2025)01-0036-05
作者:
刘佳1赵泽满12刘雅涵12CA Cristopher1矫政洧1靳小石12
(1.河北大学临床医学院,保定071000;2.河北大学附属医院普通外科,保定071000)
Author(s):
LIU Jia1ZHAO Zeman12LIU Yahan12CA Cristopher1JIAO Zhengwei1JIN Xiaoshi12
(1.School of Clinical Medicine,Hebei University,Baoding 071000,China;2.General Surgery,Hebei University Affiliated Hospital,Baoding 071000,China)
关键词:
丁酸盐炎症性肠病脂多糖
Keywords:
butyrate inflammatory bowel disease lipopolysaccharide
分类号:
R333
DOI:
10.20135/j.issn.1006-8147.2025.01.0036
文献标志码:
A
摘要:
目的:探究丁酸盐(BT)在炎症性肠病(IBD)细胞模型中的保护作用。方法:将人正常结肠上皮细胞(FHC)进行培育,用脂多糖(LPS)诱导构建炎症性肠病细胞模型,分为对照组、炎症组及0.25 mmol/L BT+LPS组、0.5mmol/L BT+LPS组、1 mmol/L BT+LPS组。其中对照组正常培育,不需额外添加任何试剂,炎症组加入浓度为100 g/mL的LPS刺激FHC细胞24 h;BT+LPS组分别加入相应浓度(0.25、0.5、1 mmol/L)的BT干预FHC细胞24 h,再加入浓度为100 g/mL的LPS刺激24 h。使用不同浓度(0、0.5、1、2、5 mmol/L)的BT作用于FHC细胞24 h和48 h后,通过细胞活力检测确定BT的浓度范围;然后分别使用0.25、0.5及1 mmol/L的BT溶液干预FHC细胞24 h后,加入100 g/mL的LPS作用24 h,RT-qPCR和ELISA分别检测对照组、炎症组、0.25 mmol/L BT+LPS组、0.5 mmol/L BT+LPS组和1 mmol/L BT+LPS组中COX-2、白细胞介素(IL)-6 mRNA以及蛋白的水平,明确BT对FHC细胞的保护作用与浓度的关系;最后电镜观察对照组、炎症组及1 mmol/L BT+LPS组中细胞的微观结构变化。结果:BT的浓度在1 mmol/L以下时FHC细胞活力在90%以上,并且作用24 h和48 h后细胞活力无明显变化。RT-qPCR结果显示,与对照组相比,炎症组中COX-2 mRNA、IL-6 mRNA升高(均P<0.001);与炎症组相比,1 mmol/L BT+LPS组COX-2 mRNA和IL-6 mRNA降低(t=3.384、4.722,均P<0.05);0.5 mmol/L BT+LPS组COX-2 mRNA和IL-6 mRNA水平降低(t=2.817、3.753,均P<0.05);0.25 mmol/L BT+LPS组COX-2 mRNA和IL-6 mRNA水平差异无统计学意义(均P>0.05)。与0.5 mmol/L BT+LPS组比较,1 mmol/L BT+LPS组COX-2 mRNA和IL-6 mRNA(t=4.561、5.196,均P<0.05)差异具有统计学意义。ELISA结果显示,与对照组相比,炎症组COX-2和IL-6表达水平升高(均P<0.001);与炎症组相比,1 mmol/L BT+LPS组COX-2和IL-6水平降低(t=4.547、3.452,均P<0.001);0.5 mmol/L BT+LPS组COX-2和L-6水平降低(t=2.927、3.265,均P<0.05);0.25 mmol/L BT+LPS组COX-2和IL-6水平差异无统计学意义(均P>0.05)。与0.5 mmol/L BT+LPS组比较,1 mmol/L BT+LPS组IL-6和COX-2水平(t=4.674、3.217,均P<0.05)差异具有统计学意义。电镜下对照组FHC细胞展现出正常且完整的微观结构,实验组FHC细胞微绒毛变稀疏,紧密连接结构被破坏,1 mmol/L BT+LPS组FHC细胞微绒毛呈现部分脱落,紧密连接结构破坏减轻。结论:BT浓度在1 mmol/L以下时,对炎症性肠病细胞模型的保护作用随浓度的增加而增强。
Abstract:
Objective: To explore the protective effect of butyrate (BT) in inflammatory bowel disease (IBD) cell model. Methods:Human normal colon epithelial cells (FHC) were cultured and induced with lipopolysaccharide (LPS) to construct an inflammatory bowel disease cell model. The cells were divided into the following groups: control group, inflammation group, 0.25 mmol/L BT+LPS group, 0.5 mmol/L BT+LPS group, and 1 mmol/L BT+LPS group. The control group was cultured normally without the need for additional reagents, while the inflammation group was stimulated with LPS at a concentration of 100 g/mL for 24 hours to stimulate FHC cells. Different BT+LPS groups were treated with corresponding concentrations(0.25,0.5,1 mmol/L) of BT to intervene in FHC cells for 24 hours, followed by stimulation with LPS at a concentration of 100 μg/mL for 24 hours. After treating FHC cells with BT at different concentrations of 0, 0.5, 1, 2 and 5 mmol/L for 24 and 48 hours, the concentration range of BT was determined by cell viability detection. Then, 0.25, 0.5 and 1 mmol/L BT solutions were used to intervene in FHC cells for 24 hours. 100 g/mL LPS was added and treated for 24 hours. RT-qPCR and ELISA were used to detect the levels of COX-2, IL-6 mRNA and protein in the control group, inflammation group, 0.25 mmol/L BT+LPS group, 0.5 mmol/L BT+LPS group, and 1 mmol/L BT+LPS group, respectively, to clarify the protective effect of BT on FHC cells and its concentration relationship. Finally, the microstructural changes of cells in the control group, inflamma-tion group, and 1 mmol/L BT+LPS group were observed under electron microscopy. Results:When the concentration of BT was below 1 mmol/L, the viability of FHC cells was above 90%, and there was no significant change in cell viability after 24 and 48 hours of treatment. The RT-qPCR results showed that compared with the control group, COX-2 mRNA and IL-6 mRNA increased(both P<0.001) in the inflammation group. Compared with the inflammation group, the 1 mmol/L BT+LPS group showed a decrease in COX-2 mRNA and IL-6 mRNA(t=3.384, 4.722, both P<0.05). The levels of COX-2 mRNA and IL-6 mRNA decreased in the 0.5 mmol/L BT+LPS group(t=2.817, 3.753, both P<0.05). There was no statistically significant difference in the levels of COX-2 mRNA and IL-6 mRNA in the 0.25 mmol/LBT+LPS group(both P>0.05). Compared with the 0.5 mmol/L BT+LPS group, the 1 mmol/L BT+LPS group showed statistically significant differences in COX-2 mRNA and IL-6 mRNA (t=4.561,5.196, both P<0.05). The ELISA results showed that compared with the control group, the expression levels of COX-2 and IL-6 increased in the inflammatory group(both P<0.001). Compared with the inflammation group, the levels of COX-2 and IL-6 were reduced in the 1 mmol/L BT+LPS group(t=4.547, 3.452, both P<0.001). The levels of COX-2 and IL-6 decreased in the 0.5 mmol/L BT+LPS group(t=2.927,3.265, both P<0.05). There was no statistically significant difference in the levels of COX-2 and IL-6 in the 0.25 mmol/L BT+LPS group (both P>0.05). Compared with the 0.5 mmol/L BT+LPS group, the 1 mmol/L BT+LPS group showed statistically significant differences in IL-6 and COX-2 levels (t=4.674, 3.217, both P<0.05). Under electron microscopy, the control group of FHC cells showed normal and intact microstructures. In the experimental group, the microvilli of FHC cells became sparse, and the tight junction structure was disrupted. In the 1 mmol/L BT+LPS group, the microvilli of FHC cells showed partial shedding, and the damage to the tight junction structure was reduced. Conclusion: The pro-tective effect of BT on inflammatory bowel disease cell models increases with increasing concentration when the concentration is below 1 mmol/L.

参考文献/References:

[1] GASALY N, HERMOSO M A, GOTTELAND M. Butyrate and the fine-tuning of colonic homeostasis: implication for inflammatory bowel diseases[J]. Int J Mol Sci,2021,22(6):3061.
[2] TYE H, YU C H, SIMMS L A, et al. NLRP1 restricts butyrate producing commensals to exacerbate inflammatory bowel disease[J]. Nat Commun,2018,9(1):3728.
[3] COUTO M R, GON?覶ALVES P, MAGRO F,et al. Microbiota-derived butyrate regulates intestinal inflammation: focus on inflammatory bowel disease[J]. Pharmacol Res,2020,159:104947.
[4] HODGKINSON K, EL ABBAR F, DOBRANOWSKI P, et al. Butyrate′s role in human health and the current progress towards its clinical application to treat gastrointestinal disease[J]. Clin Nutr,2023,42(2):61-75.
[5] ZHANG Y, LI X, LI Y, et al. DNA damage-regulated autophagy modulator 1 (dram1) mediates autophagy and apoptosis of intestinal epithelial cells in inflammatory bowel disease[J]. Dig Dis Sci,2021, 66(10):3375-3390.
[6] NADIRAH N R ,AFFENDI R A R ,NAJMI K N M, et al. Targeted sequencing of cytokine-induced PI3K-related genes in ulcerative colitis, colorectal cancer and colitis-associated cancer[J]. Int J Mol Sci,2022,23 (19): 11472-11472.
[7] MEHTA R S, MAYERS J R, ZHANG Y, et al. Gut microbial meta-bolism of 5-asa diminishes its clinical efficacy in inflammatory bowel disease[J]. Nat Med,2023,29(3):700-709.
[8] LIU Z, BAI P, WANG L, et al. Clostridium tyrobutyricum in combination with chito-oligosaccharides modulate inflammation and gut microbiota for inflammatory bowel disease treatment[J]. J Agric Food Chem,2024,72(33):18497-18506.
[9] WU J, ZHOU B, PANG X, et al. Clostridium butyricum, a butyrate-producing potential probiotic, alleviates experimental colitis thro-ugh epidermal growth factor receptor activation[J]. Food Funct,2022,13(13):7046-7061.
[10] CHEN G, RAN X, LI B, et al. Sodium butyrate inhibits inflammation and maintains epithelium barrier integrity in a tnbs-induced inflammatory bowel disease mice model[J]. EBioMedicine,2018, 30:317-325.
[11] BACH KNUDSEN K E, L?覷RKE H N, HEDEMANN M S, et al. Impact of diet-modulated butyrate production on intestinal barrier function and inflammation[J]. Nutrients, 2018,10(10):1499.
[12] YU K, LIAO S, LI C, et al. Establishment of a lipopolysaccharide-induced inflammation model of human fetal colon cells[J]. Mol Biol Rep,2023,50(7):5557-5564.
[13] HADA Y, UCHIDA H A, WADA J. Fisetin attenuates lipopolysaccharide-induced inflammatory responses in macrophage[J]. Biomed Res Int,2021,2021:5570885.
[14] RUHEE R T, MA S, SUZUKI K. Sulforaphane protects cells against lipopolysaccharide-stimulated inflammation in murine macrophages[J]. Antioxidants (Basel),2019,8(12):577.
[15] MERIWETHER D, SULAIMAN D, VOLPE C, et al. Apolipoprotein A-Ⅰ mimetics mitigate intestinal inflammation in COX2-depe-ndent inflammatory bowel disease model[J]. J Clin Invest,2019,129(9):3670-3685.
[16] NA Y R, JUNG D, STAKENBORG M, et al. Prostaglandin e2 receptor ptger4-expressing macrophages promote intestinal epithelial barrier regeneration upon inflammation[J]. Gut,2021,70(12):2249-2260.
[17] MERIWETHER D, JONES A E, ASHBY J W, et al. Macrophage COX2 mediates efferocytosis, resolution reprogramming, and intestinal epithelial repair[J]. Cell Mol Gastroenterol Hepatol,2022, 13(4):1095-1120.
[18] POWELL N, LO J W, BIANCHERI P, et al. Interleukin 6 increases production of cytokines by colonic innate lymphoid cells in mice and patients with chronic intestinal inflammation[J]. Gastroenterology,2015,149(2):456-467.e15.
[19] KE J Y, LIU Z Y, WANG Y H, et al. Gypenosides regulate autophagy through sirt1 pathway and the anti-inflammatory mechanism of mitochondrial autophagy in systemic lupus erythematosus[J]. Bioengineered,2022,13(5):13384-13397.
[20] PAW?覵OWSKA-KAMIENIAK A, KRAWIEC P, PAC-KO■UCHO-WSKA E. Interleukin 6: biological significance and role in inflammatory bowel diseases[J]. Adv Clin Exp Med,2021,30(4):465-469.
[21] LOCHHEAD P, KHALILI H, ANANTHAKRISHNAN A N, et al.Association between circulating levels of C-reactive protein and interleukin-6 and risk of inflammatory bowel disease[J]. Clin Gastroenterol Hepatol,2016,14(6):818-824.
[22] ST PAUL M, SAIBIL S D, LIEN S C, et al. IL6 induces an IL22+ CD8+ T-cell subset with potent antitumor function[J]. Cancer Immunol Res,2020,8(3):321-333.

相似文献/References:

[1]侯慧星,韩之波,池 颖,等.ESE-3在溃疡性结肠炎相关结肠癌中的意义[J].天津医科大学学报,2019,25(06):618.
 HOU Hui-xing,HAN Zhi-bo,CHI Ying,et al.The significance of ESE-3 in ulcerative colitis-associated colon cancer[J].Journal of Tianjin Medical University,2019,25(01):618.
[2]刘辉,史宝欣.炎症性肠病患者压力知觉及影响因素调查[J].天津医科大学学报,2020,26(02):178.
 LIU Hui,SHI Bao-xin.Study on perceived stress and its influencing factors of patients with inflammatory bowel disease[J].Journal of Tianjin Medical University,2020,26(01):178.

备注/Memo

备注/Memo:
基金项目:河北大学医学学科培育项目(2023X03)
作者简介:刘佳(1997-),男,硕士在读,研究方向:外科学;通信作者:靳小石,E-mail:doctorjinxiaoshi@126.com。
更新日期/Last Update: 2025-02-10