|本期目录/Table of Contents|

[1]丁心语,王俊懿,黄传,等.间歇性低氧通过MEK/ERK信号改善小鼠心肌梗死后心功能恢复[J].天津医科大学学报,2024,30(04):350-355.[doi:10.20135/j.issn.1006-8147.2024.04.0350]
 DING Xinyu,WANG Junyi,HUANG Chuan,et al.Intermittent hypoxia improves cardiac function recovery after myocardial infarction in mice via MEK/ERK signaling[J].Journal of Tianjin Medical University,2024,30(04):350-355.[doi:10.20135/j.issn.1006-8147.2024.04.0350]
点击复制

间歇性低氧通过MEK/ERK信号改善小鼠心肌梗死后心功能恢复(PDF)
分享到:

《天津医科大学学报》[ISSN:1006-8147/CN:12-1259/R]

卷:
30卷
期数:
2024年04期
页码:
350-355
栏目:
基础医学
出版日期:
2024-07-10

文章信息/Info

Title:
Intermittent hypoxia improves cardiac function recovery after myocardial infarction in mice via MEK/ERK signaling
文章编号:
1006-8147(2024)044-0350-06
作者:
丁心语王俊懿黄传万春晓
(天津医科大学总医院康复科,天津300052)
Author(s):
DING XinyuWANG JunyiHUANG ChuanWAN Chunxiao
(Department of Physical Medicine and Rehabilitation,Tianjin Medical University General Hospital,Tianjin 300052,China)
关键词:
心肌梗死间歇性低氧细胞凋亡丝裂原活化蛋白激酶细胞外信号调节激酶
Keywords:
myocardial infarction intermittent hypoxia apoptosis mitogen-activated protein kinase extracellular signal-regulated kinase
分类号:
R54
DOI:
10.20135/j.issn.1006-8147.2024.04.0350
文献标志码:
A
摘要:
目的:研究间歇性低氧(IH)对心肌梗死(MI)后C57BL/6小鼠心脏功能的影响及其机制。方法:将24只小鼠随机划分为4 组:假手术组(SHAM,n=6)、假手术低氧组(SHAM-IH,n=6)、心肌梗死组(MI,n=6)和心肌梗死低氧组(MI-IH,n=6)。超声心动检测小鼠左心室射血分数(LVEF)和左心室缩短分数(LVFS)。Masson染色检测心肌纤维化程度。Tunel染色检测细胞凋亡。蛋白印迹检测丝裂原活化蛋白激酶激酶(MEK)蛋白及其磷酸化、细胞外信号调节激酶1/2(ERK1/2)蛋白及其磷酸化和裂解半胱氨酸蛋白酶3(cleaved caspase 3)蛋白的水平。体外实验用H2O2诱导H9C2细胞损伤以模拟氧化应激,加入MEK/ERK抑制剂(U0126),检测MEK和ERK1/2的蛋白及其磷酸化水平、cleaved caspase 3蛋白水平。结果:(1)干预4周后,与MI组相比,MI-IH组 LVEF、LVFS明显增加(t=-15.520、-15.080,均P<0.001),心肌纤维化减少(t=9.547,P<0.05),MEK、ERK1/2的磷酸化、cleaved caspase 3水平均减少(t=2.292、3.267、6.399,均P<0.05),细胞凋亡减少(t=4.341,P<0.001)。(2)与H2O2组相比,H2O2+U0126组MEK、ERK1/2的磷酸化减少,caspase 3活化降低(t=3.599、9.692、6.607,均P<0.05)。结论:IH通过MEK/ERK信号抑制心肌细胞凋亡,从而促进MI小鼠心功能的恢复。
Abstract:
Objective: To explore the effects and mechanisms of intermittent hypoxia(IH) on the cardiac functionin C57BL/6 mice after myocardial infarction(MI). Methods:Twenty-four mice were classified randomly into four groups: sham group(SHAM,6 mice),sham operation with IH treatment group(SHAM-IH,6 mice),myocardial infarction group(MI,6 mice) and myocardial infarction with IH treatment group(MI,6 mice). Echocardiography was used to detect left ventricular ejection fraction(LVEF) and left ventricular shortening fraction(LVFS) in mice. Masson staining was used to detect the degree myocardial fibrosis. Tunel staining was used to detect cardiomyocytes apoptosis. Protein immunoblotting was performed to detect mitogen-activated protein kinase kinase(MEK) protein and its phosphorylation(p-MEK) level,extracellular signal-regulated kinase 1/2(ERK1/2) protein and its phosphorylation(p-ERK1/2)level,and cleaved cysteine protease 3(cleaved caspase 3) protein level. In vitro experiments,H9C2 cells were induced with H2O2 tomimic oxidative stress,MEK,ERK1/2,p-MEK,p-ERK1/2,and cleaved caspase 3 protein levels were detected after treated with MEK/ERK inhibitor(U0126). Results:After 4 weeks of intervention,compared with the MI group,LVEF and LVFS were significantly increased(t=-15.520,-15.080,both P<0.001),myocardial fibrosis(t=9.547,P<0.05),p-MEK,p-ERK1/2 expression and cleaved caspase 3(t=2.292,3.267,6.399,all P<0.05)and Tunel-positive cells(t=4.341,P<0.001)were significantly decreased in the MI-IH group.Compared to the H2O2 group,the H2O2+U0126 group had decreased protein levels of p-MEK,p-ERK1/2 and cleaved caspase 3(t=3.599,9.692,6.607,all P<0.05). Conclusion:IH intervention inhibits cardiomyocyte apoptosis through MEK/ERK signaling,thereby improving the recovery of cardiac function in mice after myocardial infarction.

参考文献/References:

[1] 中国心血管健康与疾病报告编写组. 中国心血管健康与疾病报告2022概要[J]. 中国循环杂志,2023,38(6):583-612.
[2] BOZKURT B,FONAROW G C,GOLDBERG L R,et al. Cardiac rehabilitation for patients with heart failure:JACC expert panel[J]. J Am Coll Cardiol,2021,77(11):1454-1469.
[3] 张嘉玮,陈英,邓伟丽,等. 间歇性低压氧通过δ-阿片类受体表达保护心肌梗死大鼠心肌的研究[J]. 中华物理医学与康复杂志,2020,35(7): 782-793.
[4] 党小红,黄传,万春晓. 间歇性低氧干预对心肌梗死大鼠AMPKα1/SIRT3通路及心肌能量代谢的影响[J]. 中华物理医学与康复杂志,2023,45(1):12-17.
[5] CHANG J C,LIEN C F,LEE W S,et al. Intermittent hypoxia prevents myocardial mitochondrial Ca(2+) overload and cell death during ischemia/reperfusion: the role of reactive oxygen species[J]. Cells,2019,8(6) :564-580.
[6] 孟祥艳,于海龙,郭敏,等. 间歇低压低氧预处理对心肌缺血/再灌注损伤及ZFP580表达的影响[J]. 中国应用生理学杂志,2014,30(5):396-400.
[7] WHITE H D,THYGESEN K,ALPERT J S,et al. Clinical implications of the third universal definition of myocardial infarction[J]. Heart,2014,100(5):424-32.
[8] MINICUCCI M F,AZEVEDO P S,POLEGATO B F,et al. Heart fai-lure after myocardial infarction: clinical implications and treatment[J]. Clin Cardiol,2011,34(7):410-414.
[9] FENG J,ZHAN J,MA S. LRG1 promotes hypoxia-induced cardiomyocyte apoptosis and autophagy by regulating hypoxia-inducible factor-1α[J]. Bioengineered,2021,12(1): 8897-8907.
[10] WANG X,GUO Z,DING Z,et al. Inflammation,autophagy,and apo-ptosis after myocardial infarction[J]. J Am Heart Assoc,2018,7(9): e008024.
[11] HOU L,GUO J,XU F,et al. Cardiomyocyte dimethylarginine dime-thylaminohydrolase1 attenuates left-ventricular remodeling after acute myocardial infarction: involvement in oxidative stress and apoptosis[J]. Basic Res Cardiol,2018,113(4):28-40.
[12] LIU C Y,ZHANG Y H,LI R B,et al. LncRNA CAIF inhibits autophagy and attenuates myocardial infarction by blocking p53-mediated myocardin transcription[J]. Nat Commun,2018,9(1):29-41.
[13] LIAO S,LUO Y,CHUNCHAI T,et al. An apoptosis inhibitor suppresses microglial and astrocytic activation after cardiac ischemia/reperfusion injury[J]. Inflamm Res,2022,71(7-8):861-872.
[14] YE H K,ZHANG H H,TAN Z M. MiR-328 inhibits cell apoptosis and improves cardiac function in rats with myocardial ischemia-reperfusion injury through MEK-ERK signaling pathway[J]. Eur Rev Med Pharmacol Sci,2020,24(6): 3315-3321.
[15] MIYAMOTO L,YAGI Y,HATANO A,et al. Spontaneously hyperactive MEK-ERK pathway mediates paradoxical facilitation of cell proliferation in mild hypoxia[J]. Biochim Biophys Acta,2015,1850(4):640-646.
[16] YUAN L,YU L,ZHANG J,et al. Long non-coding RNA H19 protects H9c2 cells against hypoxia-induced injury by activating the PI3K/AKT and ERK/p38 pathways[J]. Mol Med Rep,2020,21(4):1709-1716.
[17] GAO E,LEI Y H,SHANG X,et al. A novel and efficient model of coronary artery ligation and myocardial infarction in the mouse[J]. Circ Res,2010,107(12):1445-1453.
[18] BI Y,WANG G,LIU X,et al. Low-after-high glucose down-regulated Cx43 in H9c2 cells by autophagy activation via cross-regulation by the PI3K/Akt/mTOR and MEK/ERK(1/2) signal pathways[J]. Endocrine,2017,56(2):336-345.
[19] ZHENG H,SU Y,ZHU C,et al. An addition of U0126 protecting heart grafts from prolonged cold ischemia-reperfusion Injury in heart transplantation:anew preservation strategy[J]. Transplantation,2021,105(2):308-317.
[20] THYGESEN K,ALPERT J S,JAFFE A S,et al. Fourth universal definition of myocardial infarction (2018)[J]. J Am Coll Cardiol,2018,72(18):2231-2264.
[21] XU W Q,YU Z,XIE Y,et al. Therapeutic effect of intermittent hypobaric hypoxia on myocardial infarction in rats[J]. Basic Res Cardiol,2011,106(3):329-342
[22] KLAEBOE L G,EDVARDSEN T. Echocardiographic assessment of left ventricular systolic function[J]. J Echocardiogr,2019,17(1):10-16.
[23] POTTER E,MARWICK T H. Assessment of left ventricular function by echocardiography:the case for routinely adding global longitudinal strain to ejection fraction[J]. JACC Cardiovasc Imaging,2018, 11(2 Pt 1):260-274.
[24] AGUILAR M,GONZ?魣LEZ-CANDIA A,RODR?魱GUEZ J,et al. Me-chanisms of cardiovascular protection associated with intermittent hypobaric hypoxia exposure in a rat model:role of oxidative stress[J]. Int J Mol Sci,2018,19(2) :366-371.
[25] XIAO Y,ZHAO J,TUAZON J P,et al. MicroRNA-133a and myocardial infarction[J]. Cell Transplant,2019,28(7):831-838.
[26] KUMAR S,DORSTYN L,LIM Y. The role of caspases as executioners of apoptosis[J]. Biochem Soc Trans,2022,50(1):33-45.
[27] CAGNOL S,CHAMBARD J C. ERK and cell death:mechanisms of ERK-induced cell death--apoptosis,autophagy and senescence[J]. FEBS J,2010,277(1):2-21.
[28] DING H S,HUANG Y,CHEN Z,et al. Regulator of G-protein signalling 5 deficiency impairs ventricular remodelling after myocardial infarction by promoting NF-κB and MAPK signalling in mice[J]. Biochem Biophys Res Commun,2018,499(2):143-149.
[29] CHEN B,LUO L,WEI X,et al. M1 bone marrow-derived mac-rophage-derived extracellular vesicles inhibit angiogenesis and myocardial regeneration following myocardial infarction via the MALAT1/microRNA-25-3p/CDC42 axis[J]. Oxid Med Cell Longev,2021,2021:9959746.
[30] JIN H X,ZHANG Y H,GUO R N,et al. Inhibition of MEK/ERK/STAT3 signaling in oleuropein treatment inhibits myocardial ischemia/reperfusion[J]. Int J Mol Med,2018,42(2):1034-1043.

相似文献/References:

[1]劳 咪,李广平,张 跃,等.ST段抬高型心肌梗死患者梗死相关动脉自发再通的相关因素[J].天津医科大学学报,2014,20(03):201.
 LAO Mi,LI Guang-ping,ZHAND Yue,et al.Related factors of spontaneous reperfusion of infarction related artery in patients with acute ST-segment elevation myocardial infarction[J].Journal of Tianjin Medical University,2014,20(04):201.
[2]马艺杰,李 超,卢成志.去肾交感神经术对心梗犬下丘脑Ang(1-7) 及酪氨酸羟化酶的影响[J].天津医科大学学报,2016,22(01):9.
 MA Yi-jie,LI Chao,LU Cheng-zhi.Effect of renal denervation on hypothalamus angiotensin(1-7) and tyrosine hydroxylase in myocardial infarction dogs[J].Journal of Tianjin Medical University,2016,22(04):9.
[3]苏悦,史昱,姜俐洋,等.间歇性低氧干预对脑缺血大鼠神经功能恢复的影响[J].天津医科大学学报,2021,27(03):222.
 SU Yue,SHI Yu,JIANG Li-yang,et al.Effect of intermittent hypoxic intervention on neurological function recovery in cerebral ischemic rats[J].Journal of Tianjin Medical University,2021,27(04):222.
[4]陈巧,孙洁,李竹青,等.沙库巴曲缬沙坦对心肌梗死后不同病程心力衰竭患者的疗效评价[J].天津医科大学学报,2022,28(03):229.
 CHEN Qiao,SUN Jie,LI Zhu-qing,et al.Evaluation of efficacy of sacubitril -valsartan in patients with heart failure in different courses after myocardial infarction[J].Journal of Tianjin Medical University,2022,28(04):229.
[5]杜小宇,汪澈,郑汝杰,等.基于生物信息学方法筛选并验证心肌细胞增殖及心肌再生的相关枢纽基因[J].天津医科大学学报,2024,30(03):224.[doi:10.20135/j.issn.1006-8147.2024.03.0224]
 DU Xiaoyu,WANG Che,ZHENG Rujie,et al.Identificaton and validation of hub genes related to cardiomyocyte proliferation and myocardial regeneration based on bioinformatics approaches[J].Journal of Tianjin Medical University,2024,30(04):224.[doi:10.20135/j.issn.1006-8147.2024.03.0224]
[6]徐凯月,孟祥雪,黄 传,等.间歇性低氧干预提高心梗大鼠心功能和运动耐量[J].天津医科大学学报,2019,25(05):459.
 XU Kai-yue,MENG Xiang-xue,HUANG Chuan,et al.Intermittent hypoxia intervention improves cardiac function and exercise tolerance of rats with myocardial infarction[J].Journal of Tianjin Medical University,2019,25(04):459.

备注/Memo

备注/Memo:
基金项目:天津市医学重点学科(专科)建设项目(TJYXZDXK-060B);天津市卫健委科技项目青年项目(TJWJ2023QN008)
作者简介:丁心语(1999-),女,硕士在读,研究方向:心脏康复研究;
通信作者:万春晓,E-mail:cwan@tmu.edu.cn。
更新日期/Last Update: 2024-07-10