|本期目录/Table of Contents|

[1]苏悦,史昱,姜俐洋,等.间歇性低氧干预对脑缺血大鼠神经功能恢复的影响[J].天津医科大学学报,2021,27(03):222-228.
 SU Yue,SHI Yu,JIANG Li-yang,et al.Effect of intermittent hypoxic intervention on neurological function recovery in cerebral ischemic rats[J].Journal of Tianjin Medical University,2021,27(03):222-228.
点击复制

间歇性低氧干预对脑缺血大鼠神经功能恢复的影响(PDF)
分享到:

《天津医科大学学报》[ISSN:1006-8147/CN:12-1259/R]

卷:
27卷
期数:
2021年03期
页码:
222-228
栏目:
基础医学
出版日期:
2021-05-30

文章信息/Info

Title:
Effect of intermittent hypoxic intervention on neurological function recovery in cerebral ischemic rats
文章编号:
1006-8147(2021)03-0222-07
作者:
苏悦1史昱1姜俐洋12黄传1万春晓1
1.天津医科大学总医院康复医学科,天津 300052;2.天津市海河医院康复医学科,天津 300350
Author(s):
SU Yue1SHI Yu1JIANG Li-yang12HUANG Chuan1WAN Chun-xiao1
1.Department of Rehabilitation Medicine,General Hospital,Tianjin Medical University,Tianjin 300052,China;2.Department of Rehabilitation Medicine,Tianjin Haihe Hospital,Tianjin 300350,China
关键词:
间歇性低氧脑缺血AMPKPGC-1α神经保护
Keywords:
intermittent hypoxiacerebral ischemiaAMPKPGC-1αneuroprotection
分类号:
R493,R743
DOI:
-
文献标志码:
A
摘要:
目的:探究脑缺血后间歇性低氧干预的神经保护作用及机制。方法:8周龄雄性Sprague-Dawley(SD)大鼠随机分为假手术组(SHAM,n=6)、脑缺血-静息组(MCAO-SED,n=7)和脑缺血-间歇性低氧组(MCAO-IH,n=7)。术后1周开始对MCAO-IH组进行低氧干预,持续4周。每周进行改良神经损伤程度评分(mNSS);干预4周后采用MRI检测大鼠脑梗死体积;Western 印迹法检测脑皮质梗死边缘区脑组织腺苷酸活化蛋白激酶(AMPK)和过氧化物酶体增殖物激活受体γ辅激活因子-1α(PGC-1α)的表达量。 结果:与MCAO-SED组相比,MCAO-IH组死亡率无差异(14.29%,P>0.05);mNSS评分显著降低(P<0.05);脑梗死体积明显减小(P<0.01);梗死边缘区AMPK和PGC-1α表达量显著升高(PAMPK<0.001,PPGC-1α<0.05)。相关性分析结果显示,梗死边缘区AMPK和PGC-1α表达量与mNSS评分之间均呈显著负相关(P<0.05)。结论:间歇性低氧干预可通过上调脑组织中AMPK和PGC-1α蛋白表达,进而减小脑梗死体积,促进运动功能恢复,可能通过激活AMPK/PGC-1α信号通路发挥神经保护作用。
Abstract:
Objective: To explore the neuroprotective effect and mechanism of intermittent hypoxia intervention after cerebral ischemia.Methods: 8-week male Sprague-Dawley(SD) rats were randomly divided into sham operation group(SHAM,n=6),MCAO-Sedentary group (MCAO-SED,n=7) and MCAO-Intermittent Hypoxia group(MCAO-IH,n=7). In MCAO-IH group,hypoxia was conducted 1 week after operation and lasted for 4 weeks. The modified neurological severity score(mNSS) was performed weekly. After 4 weeks of intervention,MRI was used to detect cerebral infarct volume in rats; Western blotting was used to detect the expression of AMPK and PGC-1α in the peri-infarction region. Results: Compared with MCAO-SED group,MCAO-IH group performed the same mortality rate(14.29%,P>0.05),decreased mNSS score(P<0.05),decreased infarct volume(P<0.01),and increased the expression of AMPK and PGC-1α(PAMPK<0.001,PPGC-1α<0.05). Correlation analysis results showed that the expression of AMPK and PGC-1α in the peri-infarction region were significantly negatively correlated with mNSS score(P<0.05). Conclusion:Intermittent hypoxia can increase the expression of AMPK and PGC-1α in brain tissue,thereby reducing the infarct volume and promoting the recovery of motor function after cerebral ischemia. It may play a neuroprotective role by activating AMPK/PGC-1α signaling pathway.

参考文献/References:

[1] Benjamin E J,Blaha M J,Chiuve S E,et al. Heart Disease and Stroke Statistics-2017 Update: a report from the American Heart Association[J]. Circulation,2017,135(10):e146
[2] Dale E A,Mitchell G S. Spinal vascular endothelial growth factor (VEGF) and erythropoietin(EPO) induced phrenic motor facilitation after repetitive acute intermittent hypoxia[J]. Respir Physiol Neurobiol,2013,185(3):481
[3] Gutierrez D V,Clark M,Nwanna O,et al. Intermittent hypoxia training after C2 hemisection modifies the expression of PTEN and mTOR[J]. Exp Neurol,2013,248:45
[4] 徐凯月,孟祥雪,黄传,等. 间歇性低氧干预提高心梗大鼠心功能和运动耐量[J]. 天津医科大学学报,2019,25(5):459
[5] Baillieul S,Chacaroun S,Doutreleau S,et al. Hypoxic conditioning and the central nervous system:a new therapeutic opportunity for brain and spinal cord injuries? [J]. Exp Biol Med,2017,242(11):1198
[6] Spasié M R,Callaerts P,Norga K K. AMP-activated protein kinase(AMPK) molecular crossroad for metabolic control and survival of neurons[J]. Neuroscientist,2009,15(4):309
[7] Colombo S L,Moncada S. AMPKalpha1 regulates the antioxidant status of vascular endothelial cells[J]. Biochem J,2009,421(2):163
[8] St-Pierre J,Drori S,Uldry M,et al. Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators[J]. Cell,2006,127(2):397
[9] Longa E Z,Weinstein P R,Carlson S,et al. Reversible middle cerebral artery occlusion without craniectomy in rats[J]. Stroke,1989, 20(1):84
[10] Tsai Y W,Yang Y R,Chen G H,et al. The time window of intermittent hypoxia intervention after middle cerebral artery occlusion[J]. Chin J Physiol,2008,51(5):324
[11] Chen J,Li Y,Wang L,et al. Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats[J]. Stroke,2001,32(4):1005
[12] Swanson R A,Morton M T,Tsao-Wu G,et al. A semiautomated method for measuring brain infarct volume[J]. J Cereb Blood Flow Metab,1990,10(2):290
[13] Verges S,Chacaroun S,Godin-Ribuot D,et al. Hypoxic conditioning as a new therapeutic modality[J]. Front Pediatr,2015(3):58
[14] Zhu J Y,Zhu Z,Ren Y P,et al. Role of the Nrdp1 in brain injury induced by chronic intermittent hypoxia in rats via regulating the protein levels of ErbB3[J]. Neurotox Res,2020,38:124
[15] Zhang Y C,Cao H C,Qiu X H,et al. Neuroprotective effects of Adenosine A1 receptor signaling on cognitive impairment induced by chronic intermittent hypoxia in mice[J]. Front Cell Neurosci,2020,14:202
[16] Qiao Y,Liu Z,Yan X,et al. Effect of intermittent hypoxia on neuro-functional recovery post brain ischemia in mice[J]. J Mol Neurosci :MN,2015,55(4):923
[17] Zhu L L,Zhao T,Li H S,et al. Neurogenesis in the adult rat brain after intermittent hypoxia [J]. Brain Res,2005,1055(1/6):45
[18] Tsai Y W,Yang Y R,Wang P S,et al. Intermittent hypoxia after transient focal ischemia induces hippocampal neurogenesis and c-Fos expression and reverses spatial memory deficits in rats [J]. PloS One,2011,6(8):e24001
[19] Naidu A,Peters D M,Tan A Q,et al. Daily acute intermittent hypoxia to improve walking function in persons with subacute spinal cord injury:a randomized clinical trial study protocol[J]. BMC Neurol,2020,20(1):273
[20] Hassan A,Arnold B M,Caine S,et al. Acute intermittent hypoxia and rehabilitative training following cervical spinal injury alters neuronal hypoxia-and plasticity-associated protein expression[J]. PloS One,2018,13(5):e0197486
[21] Cui L L,Golubczyk D,Jolkkonen J. Top 3 behavioral tests in cell therapy studies after stroke:difficult to stop a moving train[J]. Stroke,2017,48(11):3165
[22] Ritzl A,Meisel S,Wittsack H J,et al. Development of brain infarct volume as assessed by magnetic resonance imaging (MRI):follow-up of diffusion-weighted MRI lesions[J]. JMRI,2004,20(2):201
[23] Tipirneni-Sajja A,Christensen S,Straka M,et al. Prediction of final infarct volume on subacute MRI by quantifying cerebral edema in ischemic stroke[J]. J Cereb Blood Flow Metab,2017,37(8):3077
[24] Diekhorst L,Gómez-de Frutos M C,Laso-García F,et al. Mesenchymal stem cells from adipose tissue do not improve functional recovery after ischemic stroke in hypertensive rats[J]. Stroke,2020,51:342
[25] Yang C J,DeMars K M,Alexander J C,et al. Sustained neurological recovery after stroke in aged rats treated with a novel prostacyclin analog[J]. Stroke,2017,48:1948
[26] Kim Y,Kim Y S,Kim H Y,et al. Early treatment with poly(ADP-Ribose) polymerase-1 inhibitor(JPI-289) reduces infarct volume and improves long-term behavior in an animal model of ischemic stroke[J]. Mol Neurobiol,2018,55(9):7153
[27] Carling D. AMPK signalling in health and disease[J]. Curr Opin Cell Biol,2017,45:31
[28] Jiang S,Li T,Ji T,et al. AMPK:potential therapeutic target for ischemic stroke [J]. Theranostics,2018,8(16):4535
[29] Thomas A,Belaidi E,Moulin S,et al. Chronic intermittent hypoxia impairs insulin sensitivity but improves whole-body glucose tolerance by activating skeletal muscle AMPK[J]. Diabetes,2017,66(12):2942
[30] Perim R R,Fields D P,Mitchell G S. Spinal AMP kinase activity differentially regulates phrenic motor plasticity[J]. J Appl Physiol,2020,128(3):523
[31] Toyama E Q,Herzig S,Courchet J,et al. Metabolism. AMP-activated protein kinase mediates mitochondrial fission in response to energy stress[J]. Science,2016,351(6270):275
[32] Yu J,Li X,Matei N,et al. Ezetimibe,a NPC1L1 inhibitor,attenuates neuronal apoptosis through AMPK dependent autophagy activation after MCAO in rats[J]. Exp Neurol,2018,307:12
[33] Yun C W,Lee J H,Lee S H. Hypoxia-induced PGC-1α regulates mitochondrial function and tumorigenesis of colorectal cancer cells [J]. Anticancer Res,2019,39(9):4865
[34] Wareski P,Vaarmann A,Choubey V,et al. PGC-1{alpha} and PGC-1{beta} regulate mitochondrial density in neurons[J]. J Biol Chem,2009,284(32):21379
[35] Yu K,Kuang S,Wang C,et al. Changes in mitochondria-associated protein expression and mitochondrial function in response to 2 weeks of enriched environment training after cerebral ischaemia- reperfusion injury[J]. J Mol Neurosci :MN,2020,70(3):413
[36] Zhang Q,Liang X C. Effects of mitochondrial dysfunction via AMPK/PGC-1α signal pathway on pathogenic mechanism of diabetic peripheral neuropathy and the protective effects of chinese medicine[J]. Chin J Integr Med,2019,25(5):386
[37] Cantó C,Gerhart-Hines Z,Feige J N,et al. AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity[J]. Nature,2009,458(7241):1056
[38] Ashabi G,Khodagholi F,Khalaj L,et al. Activation of AMP-activated protein kinase by metformin protects against global cerebral ischemia in male rats:interference of AMPK/PGC-1α pathway[J]. Metab Brain Dis,2014,29(1):47
[39] Chen C Y,Tsai Y L,Kao C L,et al. Effect of mild intermittent hypoxia on glucose tolerance,muscle morphology and AMPK-PGC-1alpha signaling[J]. Chin J Physiol,2010,53(1):62

相似文献/References:

[1]徐凯月,孟祥雪,黄 传,等.间歇性低氧干预提高心梗大鼠心功能和运动耐量[J].天津医科大学学报,2019,25(05):459.
 XU Kai-yue,MENG Xiang-xue,HUANG Chuan,et al.Intermittent hypoxia intervention improves cardiac function and exercise tolerance of rats with myocardial infarction[J].Journal of Tianjin Medical University,2019,25(03):459.

备注/Memo

备注/Memo:
基金项目 国家重点研发计划(2017YFC1308504);天津特支计划高层次创新团队项目; 天津市自然科学基金重点项目(18JCZDJC98900);天津市卫生局重点发展项目(16KJ122);国家重点研发计划(2017YFC 1104004)
作者简介 苏悦(1996-),女,硕士在读,研究方向:康复医学与理疗学;
通信作者:万春晓,E-mail:cwan@tmu.edu.cn。
更新日期/Last Update: 2021-05-30