|本期目录/Table of Contents|

[1]范亚茹,李瑞欣 综述,刘浩,等.用于癌症术后光热治疗与组织再生双功能支架的研究进展[J].天津医科大学学报,2022,28(06):687-690.
点击复制

用于癌症术后光热治疗与组织再生双功能支架的研究进展(PDF)
分享到:

《天津医科大学学报》[ISSN:1006-8147/CN:12-1259/R]

卷:
28卷
期数:
2022年06期
页码:
687-690
栏目:
综述
出版日期:
2022-11-20

文章信息/Info

Title:
-
文章编号:
1006-8147(2022)06-0687-04
作者:
范亚茹12李瑞欣1 综述刘浩1严颖彬1 审校
1.南开大学附属口腔医院,天津市口腔医院口腔颌面头颈外科,天津市口腔功能重建重点实验室,天津300041;2.天津医科大学口腔临床学院,天津300070
Author(s):
-
关键词:
骨肉瘤皮肤黑色素瘤乳腺癌光热治疗光热功能化支架组织再生
Keywords:
-
分类号:
R739.81
DOI:
-
文献标志码:
A
摘要:
癌症严重威胁着人类健康,甚至危及生命。如何修复癌症术后组织缺损,同时预防残余癌细胞复发成为临床上的重大挑战。将光热试剂与三维支架结合制备光热功能化支架,支架植入术后创面,一方面接受近红外激光照射产生的光热效应消融残余癌细胞,另一方面,支架可刺激缺损周围组织细胞再生。对光热功能化支架在骨肉瘤、皮肤黑色素瘤以及乳腺癌中的应用归纳总结,分析不同支架材料在不同癌症治疗中的优势,可为其他肿瘤的治疗提供新思路。
Abstract:
-

参考文献/References:

[1] ZHU X,HENG Y,ZHOU L,et al. A prognostic nomogram for predicting risk of recurrence in laryngeal squamous cell carcinoma patients after tumor resection to assist decision making for postoperative adjuvant treatment[J]. J Surg Oncol,2019,120(4):698-706.
[2] PANTULA U,ARANGO-OSPINA M,BOCCACCINNI A R. Bioactive glasses incorporating less-common ions to improve biological and physical properties[J]. J Mater Sci Mater Med,2021,33(1):3.
[3] LIU Y,LI T,MA H,et al. 3D-printed scaffolds with bioactive elements-induced photothermal effect for bone tumor therapy[J]. Acta Biomater,2018,73:531-546.
[4] DANG W,LI T,LI B,et al. A bifunctional scaffold with CuFeSe2 nanocrystals for tumor therapy and bone reconstruction[J]. Biomaterials,2018,160:92-106.
[5] MA H,JIANG C,ZHAI D,et al. A bifunctional biomaterial with photothermal effect for tumor therapy and bone regeneration[J]. Adv Funct Mater,2016,26(8):1197-1208.
[6] MA H,LI T,HUNA Z,et al. 3D printing of high-strength bioscaffolds for the synergistic treatment of bone cancer[J]. NPG Asia materials,2018,10(4):31-44.
[7] MA H,LUO J,SUN Z,et al. 3D printing of biomaterials with mussel-inspired nanostructures for tumor therapy and tissue regeneration[J]. Biomaterials,2016,111:138-148.
[8] PAN S,YIN J,YU L,et al. 2D MXene-integrated 3D-printing scaffolds for augmented osteosarcoma phototherapy and accelerated tissue reconstruction[J]. Adv Sci (Weinh),2019,7(2):1901511.
[9] SEONG Y J,SONG E H,PARK C,et al. Porous calcium phosphate-collagen composite microspheres for effective growth factor delivery and bone tissue regeneration[J]. Mater Sci Eng C Mater Biol Appl,2020,109:110480.
[10] JANUARIYASA I K,ANA I D,YUSUF Y. Nanofibrous poly(vinyl alcohol)/chitosan contained carbonated hydroxyapatite nanoparticles scaffold for bone tissue engineering[J]. Mater Sci Eng C Mater Biol Appl,2020,107:110347.
[11] ZHAO P,GE Y,LIU X,et al. Ordered arrangement of hydrated GdPO4 nanorods in magnetic chitosan matrix promotes tumor photothermal therapy and bone regeneration against breast cancer bone metastases[J]. Chem Eng J(Lausanne,Switzerland:1996),2020, 381:122694.
[12] LU J,YANG F,KE Q,et al. Magnetic nanoparticles modified-porous scaffolds for bone regeneration and photothermal therapy against tumors[J]. Nanomedicine,2018,14(3):811-822.
[13] LONG J,ZHANG W,CHEN Y,et al. Multifunctional magnesium incorporated scaffolds by 3D-printing for comprehensive postsurgical management of osteosarcoma[J]. Biomaterials,2021,275:120950.
[14] YANG C,MA H,WANG Z,et al. 3D printed wesselsite nanosheets functionalized scaffold facilitates NIR-Ⅱ photothermal therapy and vascularized bone regeneration[J]. Adv Sci (Weinh),2021,8(20): e2100894.
[15] MIAO H,SHEN R,ZHANG W,et al. Near-infrared light triggered silk fibroin scaffold for photothermal therapy and tissue repair of bone tumors[J]. Adv Funct Mater,2021,31(10):2007188.
[16] CUI Z,KIM S,BALJON J J,et al. Microporous methacrylated glycol chitosan-montmorillonite nanocomposite hydrogel for bone tissue engineering[J]. Nat Commun,2019,10(1):3523.
[17] LUO S,WU J,JIA Z,et al. An injectable,bifunctional hydrogel with photothermal effects for tumor therapy and bone regeneration[J]. Macromol Biosci,2019,19(9):e1900047.
[18] LI D,NIE W,CHEN L,et al. Self-assembled hydroxyapatite-graphene scaffold for photothermal cancer therapy and bone regeneration[J]. J Biomed Nanotechnol,2018,14(12):2003-2017.
[19] LI L,YU R,CAI T,et al. Effects of immune cells and cytokines on inflammation and immunosuppression in the tumor microenvironment[J]. Int Immunopharmacol,2020,88:106939.
[20] LIANG Y,ZHAO X,HU T,et al. Adhesive hemostatic conducting injectable composite hydrogels with sustained drug release and photothermal antibacterial activity to promote full-thickness skin regeneration during wound healing[J]. Small,2019,15(12):e1900046.
[21] ZHOU L,XI Y,XUE Y,et al. Injectable self-healing antibacterial bioactive polypeptide-based hybrid nanosystems for efficiently treating multidrug resistant infection,skin-tumor therapy,and enhancing wound healing[J]. Adv Funct Mater,2019,29(22):1806883.
[22] MA H,ZHOU Q,CHANG J,et al. Grape seed-inspired smart hydrogel scaffolds for melanoma therapy and wound healing[J]. ACS Nano,2019,13(4):4302-4311.
[23] WU Z,ZHUANG H,MA B,et al. Manganese-doped calcium silicate nanowire composite hydrogels for melanoma treatment and wound healing[J]. Research (Wash D C),2021,2021:9780943.
[24] WANG X,MA B,XUE J,et al. Defective black nano-titania thermogels for cutaneous tumor-induced therapy and healing[J]. Nano Lett,2019,19(3):2138-2147.
[25] CHIESA E,DORATI R,PISANI S,et al. Graphene nanoplatelets for the development of reinforced PLA-PCL electrospun fibers as the next-generation of biomedical mats[J]. Polymers (Basel),2020,12(6):1390.
[26] ZHANG R,JIANG G,GAO Q,et al. Sprayed copper peroxide nanodots for accelerating wound healing in a multidrug-resistant bacteria infected diabetic ulcer[J]. Nanoscale,2021,13(37):15937-15951.
[27] WANG X,LV F,LI T,et al. Electrospun micropatterned nanocomposites incorporated with Cu2S nanoflowers for skin tumor therapy and wound healing[J]. ACS Nano,2017,11(11):11337-11349.
[28] YU Q,HAN Y,TIAN T,et al. Chinese sesame stick-inspired nano-fibrous scaffolds for tumor therapy and skin tissue reconstruction[J]. Biomaterials,2019,194:25-35.
[29] YU Q,HAN Y,WANG X,et al. Copper Silicate hollow microspheres-incorporated scaffolds for chemo-photothermal therapy of melanoma and tissue healing[J]. ACS Nano,2018,12(3):2695-2707.
[30] XUE C,SUTRISNO L,LI M,et al. Implantable multifunctional black phosphorus nanoformulation-deposited biodegradable scaffold for combinational photothermal/ chemotherapy and wound healing[J]. Biomaterials,2021,269:120623.
[31] FAHAD U M. Breast cancer: current perspectives on the disease status[J]. Adv Exp Med Biol,2019,1152:51-64.
[32] SHI X,CUI S,Song X,et al. Gelatin-crosslinked pectin nanofiber mats allowing cell infiltration[J]. Mater Sci Eng C Mater Biol Appl,2020,112:110941.
[33] SUTRISNO L,CHEN H,CHEN Y,et al. Composite scaffolds of black phosphorus nanosheets and gelatin with controlled pore structures for photothermal cancer therapy and adipose tissue engineering[J]. Biomaterials,2021,275:120923.
[34] VAGHASIYA K,ERAM A,SHARMA A,et al. Alginate microspheres elicit innate m1-inflammatory response in macrophages leading to bacillary killing[J]. AAPS Pharm Sci Tech,2019,20(6):241.
[35] LIU C,WANG Z,WEI X,et al. 3D printed hydrogel/PCL core/shell fiber scaffolds with NIR-triggered drug release for cancer therapy and wound healing[J]. Acta Biomater,2021,131:314-325.
[36] LUO Y,WEI X,WAN Y,et al. 3D printing of hydrogel scaffolds for future application in photothermal therapy of breast cancer and tissue repair[J]. Acta Biomater,2019,92:37-47.

相似文献/References:

[1]韩鑫宇,李婷芳,王峰.GADD45A通过端粒替代延长途径调控骨肉瘤细胞增殖[J].天津医科大学学报,2023,29(03):265.
 HAN Xin-yu,LI Ting-fang,WANG Feng.GADD45A regulates the proliferation of osteosarcoma cell through alternative lengthening of telomeres[J].Journal of Tianjin Medical University,2023,29(06):265.

备注/Memo

备注/Memo:
基金项目 天津市科技计划项目(19ZXDBSY00070);国家自然科学基金(11972198);天津市临床医学重点学科专项(HWZX001)
作者简介 范亚茹(1994-),女,硕士在读,研究方向:口腔颌面部肿瘤的光热治疗与创面修复;
通信作者:严颖彬,E-mail:yingbinyan@qq.com。
更新日期/Last Update: 2022-11-20