|本期目录/Table of Contents|

[1]董玉梅,杜雪.早发性卵巢功能不全的lncRNA-miRNA-mRNA网络的构建和生物信息学分析[J].天津医科大学学报,2024,30(05):422-428.[doi:10.20135/j.issn.1006-8147.2024.05.0422]
 DONG Yumei,DU Xue.Construction and bioinformatics analysis of lncRNA-miRNA-mRNA network in premature ovarian insufficiency[J].Journal of Tianjin Medical University,2024,30(05):422-428.[doi:10.20135/j.issn.1006-8147.2024.05.0422]
点击复制

早发性卵巢功能不全的lncRNA-miRNA-mRNA网络的构建和生物信息学分析(PDF)
分享到:

《天津医科大学学报》[ISSN:1006-8147/CN:12-1259/R]

卷:
30卷
期数:
2024年05期
页码:
422-428
栏目:
基础医学
出版日期:
2024-09-25

文章信息/Info

Title:
Construction and bioinformatics analysis of lncRNA-miRNA-mRNA network in premature ovarian insufficiency
文章编号:
1006-8147(2024)05-0422-07
作者:
董玉梅1杜雪2
(1.天津医科大学总医院妇产科,天津市女性生殖健康与优生重点实验室,天津300052;2.天津市人民医院/南开大学人民医院妇科,天津300121)
Author(s):
DONG Yumei1DU Xue2
(1.Department of Gynecology and Obstetrics,the General Hospital,Tianjin Medical University,Tianjin Key Laboratory of Female Reproductive Health and Eugenics,Tianjin 300052,China;2.Department of Gynecology,Tianjin Union Medical Center,Nankai University,Tianjin 300121,China)
关键词:
早发性卵巢功能不全生物信息学ceRNA调控网络lncRNA颗粒细胞
Keywords:
premature ovarian insufficiencybioinformaticsceRNA regulatory networklncRNAgranulosa cells
分类号:
R711.75
DOI:
10.20135/j.issn.1006-8147.2024.05.0422
文献标志码:
A
摘要:
目的:探讨lncRNA相关内源竞争RNA(ceRNA)网络在早发性卵巢功能不全中的作用机制。方法:从Gene Expression Omnibus(GEO)数据库中筛选出两个早发性卵巢功能不全患者的数据集,使用R语言“limma”包筛选出差异表达的lncRNA、miRNA和mRNA。使用Starbase数据库预测与差异lncRNA相互作用的miRNAs,使用TargetScan和miRDB数据库预测与差异miRNAs相互作用的mRNAs,预测的mRNAs与差异mRNAs取交集。根据RNA之间的相互作用关系,建立早发性卵巢功能不全的lncRNA-miRNA-mRNA ceRNA调控网络。使用Metascape在线工具对ceRNA调控网络中的mRNA进行GO和KEGG功能分析,通过String数据库建立蛋白质相互作用(PPI)网络,利用Cytohubba插件识别PPI网络中的hub基因并构建lncRNA-miRNA-hub基因网络。结果:从早发性卵巢功能不全患者与正常对照组中筛选了116个差异lncRNAs,22个差异miRNAs和282个差异mRNAs。通过116个差异lncRNAs,利用数据库预测到了13个差异lncRNAs,7个差异miRNAs和54个差异mRNAs的相互作用,构建了早发性卵巢功能不全的lncRNA-miRNA-mRNA ceRNA调控网络。GO和KEGG富集分析结果显示,调控网络中的mRNA参与早发性卵巢功能不全的生物学过程,包括凋亡信号通路、mRNA的代谢过程和cAMP信号通路。通过PPI网络筛选了8个hub基因(EIF4ENIF1、SENP1、RBM5、DYNLL2、AGO2、SRSF1、CAPZB、SRSF10),构建了一个lncRNA-miRNA-hub基因网络。结论:12个lncRNA通过参与SRSF1等hub基因的表达,调控影响早发性卵巢功能不全的发生、发展。
Abstract:
Objective:To explore the mechanism of lncRNA related endogenous competitive RNA(ceRNA) regulatory network in premature ovarian insufficiency. Methods:Two data sets about premature ovarian insufficiency patients and healthy controls were screened from the Gene Expression Omnibus(GEO) database. Differentially expressed lncRNAs,miRNAs and mRNAs were identified by "limma" package of R software. The miRNAs interacting with differentially expressed lncRNAs were predicted by the Starbase database,TargetScan and miRDB databases were used to predict mRNAs that interact with the differentially expressed miRNAs,and the predicted mRNAs were intersected with differentially expressed mRNAs. Based on the interactions between RNAs,a lncRNA-miRNA-mRNA ceRNA regulatory network for premature ovarian insufficiency was established. GO and KEGG functional analysis of mRNA in ceRNA network was performed by "Metascape" online analysis tools,and protein-protein interaction(PPI) network was established by String database. The Cytohubba plugin of Cytoscape was used to identify hub genes in the PPI network,and a lncRNA-miRNA-hub gene network was constructed. Results:116 differentially expressed lncRNAs,22 differentially expressed miRNAs and 282 differentially expressed mRNAs were identified between premature ovarian insufficiency patients and normal controls. Based on the 116 lncRNAs,the interaction of 13 differentially expressed lncRNAs,7 differentially expressed miRNAs and 54 differentially expressed mRNAs were predicted by the database,the lncRNA-miRNA-mRNA ceRNA network of premature ovarian insufficiency was constructed. The results of GO and KEGG analysis showed that the mRNAs in the ceRNA network were involved in premature ovarian insufficiency related biological processes,including apoptosis signaling pathway,regulation of mRNA metabolic process,cAMP signaling pathway. We identified 8 hub genes from the PPI network(EIF4ENIF1,SENP1,RBM5,DYNLL2,AGO2,SRSF1,CAPZB,SRSF10) and constructed a lncRNA-miRNA-hub gene network. Conclusion:Twelve lncRNAs influence the occurrence and development of premature ovarian insufficiency by participating in expression of hub gene SRSF1 and so on.

参考文献/References:

[1] WEBBER L,DAVIES M,ANDERSON R,et al. ESHRE guideline:management of women with premature ovarian insufficiency[J]. Hum Reprod,2016,31(5):926-937.
[2] LEW R. Natural history of ovarian function including assessment of ovarian reserve and premature ovarian failure[J]. Best Pract Res Clin Obstet Gynaecol,2019,55:2-13.
[3] DAHARIYA S,PADDIBHATLA I,KUMAR S,et al. Long noncoding RNA:Classification,biogenesis and functions in blood cells[J]. Mol Immunol,2019,112:82-92.
[4] WANG X,ZHANG X,DANG Y,et al. Long noncoding RNA HCP5 participates in premature ovarian insufficiency by transcriptionally regulating MSH5 and DNA damage repair via YB1[J]. Nucleic Acids Res,2020,48(8):4480-4491.
[5] LUO C,WEI L,QIAN F,et al. LncRNA HOTAIR regulates autophagy and proliferation mechanisms in premature ovarian insufficiency through the miR-148b-3p/ATG14 axis[J]. Cell Death Discov,2024,10(1):44.
[6] DANG Y,WANG X,HAO Y,et al. MicroRNA-379-5p is associate with biochemical premature ovarian insufficiency through PARP1 and XRCC6[J]. Cell Death Dis,2018,9(2):106.
[7] PANKIEWICZ K,LAUDA■SKI P,ISSAT T. The role of noncoding RNA in the pathophysiology and treatment of premature ovarian insufficiency[J]. Int J Mol Sci,2021,22(17):9336.
[8] BOUCKENHEIMER J,FAUQUE P,LECELLIER CH,et al. Differential long non-coding RNA expression profiles in human oocytes and cumulus cells[J]. Sci Rep,2018,8(1):2202.
[9] GUO Y,SUN J,LAI D. Role of microRNAs in premature ovarian insufficiency[J]. Reprod Biol Endocrinol,2017,15(1):38.
[10] WANG F,CHEN X,SUN B,et al. Hypermethylation-mediated downregulation of lncRNA PVT1 promotes granulosa cell apoptosis in premature ovarian insufficiency via interacting with Foxo3a[J]. J Cell Physiol,2021,236(7):5162-5175.
[11] ZHAO X,Tang DY,ZUO X,et al. Identification of lncRNA-miRNA-mRNA regulatory network associated with epithelial ovarian cancer cisplatin-resistant[J]. J Cell Physiol,2019,234(11):19886-19894.
[12] CAPONNETTO A,BATTAGLIA R,FERRARA C,et al. Down-regulation of long non-coding RNAs in reproductive aging and analysis of the lncRNA-miRNA-mRNA networks in human cumulus cells[J]. J Assist Reprod Genet,2022,39(4):919-931.
[13] HUANG Y,LV Y,QI T,et al. Metabolic profile of women with premature ovarian insufficiency compared with that of age-matched healthy controls[J]. Maturitas,2021,148:33-39.
[14] WANG S,LIN S,ZHU M,et al. Acupuncture reduces apoptosis of granulosa cells in rats with premature ovarian failure via restoring the PI3K/Akt signaling pathway[J]. Int J Mol Sci,2019,20(24):6311.
[15] WANG Z,SHI F. Phosphodiesterase 4 and compartmentalization of cyclicAMP signaling [J]. Chinese Sci Bull,2007,52:34-46.
[16] WU Q,CHEN M,LI Y,et al. Paeoniflorin alleviates cisplatin-induced diminished ovarian reserve by restoring the function of ovarian granulosa cells via activating FSHR/cAMP/PKA/CREB signaling pathway [J]. Molecules,2023,28(24):8123.
[17] ZHAO M,FENG F,CHU C,et al. A novel EIF4ENIF1 mutation associated with a diminished ovarian reserve and premature ovarian insufficiency identified by whole-exome sequencing[J]. J Ovarian Res,2019,12(1):119.
[18] WANG H,ZHANG Y,ZHANG J,et al. circSLC41A1 resists porcine granulosa cell apoptosis and follicular atresia by promoting SRSF1 through miR-9820-5p sponging[J]. Int J Mol Sci,2022,23(3):1509.
[19] WU Y,YU B,WANG M. SENP1 is required for the growth,migration,and survival of human adipose-derived stem cells[J]. Adipocyte,2021,10(1):38-47.
[20] TAN S,FENG B,YIN M,et al. Stromal Senp1 promotes mouse early folliculogenesis by regulating BMP4 expression[J]. Cell Biosci,2017, 7:36.
[21] SHKRETA L,TOUTANT J,DURAND M,et al. SRSF10 connects DNA damage to the alternative splicing of transcripts encoding apoptosis,cell-cycle control,and DNA repair factors[J]. Cell Rep,2016,17(8):1990-2003.
[22] PAPACHRISTOU D J,KORPETINOU A,GIANNOPOULOU E,et al. Expression of the ribonucleases Drosha,Dicer,and Ago2 in colorectal carcinomas[J]. Virchows Arch,2011,459(4):431-440.
[23] VAKSMAN O,HETLAND T E,TROPE C G,et al. Argonaute,Dicer,and Drosha are up-regulated along tumor progression in serous ovarian carcinoma[J]. Hum Pathol,2012,43(11):2062-2069.
[24] BAGLIO S R,VAN EIJNDHOVEN M A,KOPPERS-LALIC D,et al. Sensing of latent EBV infection through exosomal transfer of 5′pppRNA[J]. Proc Natl Acad Sci U S A,2016,113(5):E587-E596.
[25] XIE S,ZHANG Q,ZHAO J,et al. MiR-423-5p may regulate ovarian response to ovulation induction via CSF1[J]. Reprod Biol Endoc-rinol,2020,18(1):26.
[26] LU X,GAO H,ZHU B,et al. Circular RNA circ_RANBP9 exacerbates polycystic ovary syndrome via microRNA-136-5p/XIAP axis[J]. Bioengineered,2021,12(1):6748-6758.
[27] PUGACHEVA E M,TIWARI V K,ABDULLAEV Z,et al. Familial cases of point mutations in the XIST promoter reveal a correlation between CTCF binding and pre-emptive choices of X chromosome inactivation[J]. Hum Mol Genet,2005,14(7):953-965.
[28] SATO K,UEHARA S,HASHIYADA M,et al. Genetic significance of skewed X-chromosome inactivation in premature ovarian failure[J]. Am J Med Genet A,2004,130a(3):240-244.
[29] HAO T,HUANG S,HAN F. LINC-PINT suppresses tumour cell proliferation,migration and invasion through targeting miR-374a-5p in ovarian cancer[J]. Cell Biochem Funct,2020,38(8):1089-1099.
[30] WU Y,ZHU B,YAN Y,et al. Long non-coding RNA SNHG1 stimulates ovarian cancer progression by modulating expression of miR-454 and ZEB1[J]. Mol Oncol,2021,15(5):1584-1596.

相似文献/References:

[1]高红叶,褚新雷,李艳霞,等.人SRGAP1蛋白结构和功能预测[J].天津医科大学学报,2017,23(05):389.
 GAO Hong-ye,CHU Xin-lei,LI Yan-xia,et al.Structural and Functional prediction of SRGAP1 in human[J].Journal of Tianjin Medical University,2017,23(05):389.
[2]李 伟,王兆松,董秋萍,等.肺鳞癌中miR-144靶基因预测及其生物信息学分析[J].天津医科大学学报,2018,24(04):287.
 LI Wei,WANG Zhao-song,DONG Qiu-ping,et al.Bioinformatic analysis and prediction of miR-144 target genes in lung squamous cell carcinoma[J].Journal of Tianjin Medical University,2018,24(05):287.
[3]柴慈曼,杨绍时.乳腺癌他莫昔芬耐药相关基因及通路的筛选[J].天津医科大学学报,2018,24(06):501.
 CHAI Ci-man,YANG Shao-shi.Identification of keygenes and pathwaysoftamoxifen-resistancein breast cancer[J].Journal of Tianjin Medical University,2018,24(05):501.
[4]王世霞,杨艳芳,马 宁,等.基于芯片数据的雌激素受体阳性乳腺癌他莫昔芬耐药相关基因分析[J].天津医科大学学报,2019,25(01):32.
 WANG Shi-xia,YANG Yan-fang,MA Ning,et al.Bioinformatics analysis of key genes for tamoxifen resistancein estrogen receptor positive breast cancer[J].Journal of Tianjin Medical University,2019,25(05):32.
[5]余 冬,冯 霜,李 俊,等.MiR-199a-3p在胰腺癌中的表达水平及生物信息学分析[J].天津医科大学学报,2019,25(02):119.
 YU Dong,FENG Shuang,LI Jun,et al.The expression of miR-199a-3p in pancreatic cancer and bioinformatics analysis[J].Journal of Tianjin Medical University,2019,25(05):119.
[6]柴慈曼 综述,杨绍时 审校.生物信息学辅助研究乳腺癌转移相关lncRNA进展[J].天津医科大学学报,2021,27(01):90.
[7]杨倩玉,李璇,闫蓓蕾,等.通过生物信息学分析鉴定调控神经母细胞瘤骨髓转移的中枢基因[J].天津医科大学学报,2021,27(03):259.
 YANG Qian-yu,LI Xuan,YAN Bei-lei,et al.Identification of hub genes to regulate neuroblastoma metastasis to bone marrow by bioinformatics analysis[J].Journal of Tianjin Medical University,2021,27(05):259.
[8]程雅静,刘莹,王菲.基于生物信息学方法筛选散发性克雅氏病神经炎症相关关键基因[J].天津医科大学学报,2022,28(01):1.
 CHENG Ya-Jing,LIU Ying,WANG Fei.Identification of hub genes related to neuroinflammation of sporadic Creutzfeldt-Jakob disease by integrated bioinformatics analysis[J].Journal of Tianjin Medical University,2022,28(05):1.
[9]杜小宇,汪澈,郑汝杰,等.基于生物信息学方法筛选并验证心肌细胞增殖及心肌再生的相关枢纽基因[J].天津医科大学学报,2024,30(03):224.[doi:10.20135/j.issn.1006-8147.2024.03.0224]
 DU Xiaoyu,WANG Che,ZHENG Rujie,et al.Identificaton and validation of hub genes related to cardiomyocyte proliferation and myocardial regeneration based on bioinformatics approaches[J].Journal of Tianjin Medical University,2024,30(05):224.[doi:10.20135/j.issn.1006-8147.2024.03.0224]

备注/Memo

备注/Memo:
作者简介 董玉梅(1983-),女,主治医师,学士,研究方向:妇科内分泌;通信作者:杜雪,E-mail:lanlandetommao@163.com。
更新日期/Last Update: 2024-09-20