|本期目录/Table of Contents|

[1]周 彤,赵 倩.整合多组学数据筛选胰腺癌进展中的关键基因[J].天津医科大学学报,2024,30(02):132-137,156.[doi:10.20135/j.issn.1006-8147.2024.02.0132]
 ZHOU Tong,ZHAO Qian.Integrating multi-omics data to screen key genes in pancreatic cancer progression[J].Journal of Tianjin Medical University,2024,30(02):132-137,156.[doi:10.20135/j.issn.1006-8147.2024.02.0132]
点击复制

整合多组学数据筛选胰腺癌进展中的关键基因(PDF)
分享到:

《天津医科大学学报》[ISSN:1006-8147/CN:12-1259/R]

卷:
30卷
期数:
2024年02期
页码:
132-137,156
栏目:
肿瘤疾病专题
出版日期:
2024-03-20

文章信息/Info

Title:
Integrating multi-omics data to screen key genes in pancreatic cancer progression
文章编号:
1006-8147(2024)02-0132-07
作者:
周 彤赵 倩
(天津医科大学基础医学院细胞生物学系,天津 300070)
Author(s):
ZHOU TongZHAO Qian
(Department of Cell Biology,School of Basic Medical Sciences,Tianjin Medical University,Tianjin 300070,China)
关键词:
胰腺癌生物信息学分析枢纽基因
Keywords:
pancreas cancerbioinformatics analysiskey genes
分类号:
R735.9
DOI:
10.20135/j.issn.1006-8147.2024.02.0132
文献标志码:
A
摘要:
目的:整合多组学数据筛选胰腺癌进展中的关键基因。方法:在GEO数据库中下载GSE149103数据集,对正常胰腺导管细胞系(HPNE)、原发性胰腺癌细胞系(PANC)以及转移胰腺癌细胞系(Capan)的基因表达及染色质开放性测序数据进行差异分析,并对差异基因进行GO和KEGG富集分析、PPI网络构建以及Hub基因筛选。结果:HPNE与PANC组筛选出1 640个差异表达基因、1 826个差异峰值区域关联基因;PANC与Capan之间筛选出4 286个差异表达基因、4 489个差异峰值区域关联基因。GO和KEGG富集分析显示两组差异基因均在轴突形成功能、MAPK信号通路和Hippo信号通路富集。最后通过PPI网络的构建与分析得到HPNE与PANC组关键基因集FN1、SOX2、SELPLG、GREM1、MEF2C、 CCR7、FMN1、COL6A3、NR5A2、CTNNA2;PANC与Capan组关键基因集KDR、IL6、MMP2、CXCR4、FLT1、PPARG、 SOX2、ETS1、GRIN2A、NTRK2。其中SOX2为两组共有关键基因。结论:SOX2可能在胰腺癌发生、发展及转移过程中发挥着重要作用。
Abstract:
Objective:To screen key genes in pancreatic cancer progression by integrating multi-omics data. Methods:The GSE149103 data set in the GEO database was downloaded,and differential analysis on the gene expression and chromatin access sequencing data of normal pancreatic cells(HPNE),primary pancreatic cancer cells(PANC) and metastatic pancreatic cancer cells(Capan) was performed. GO and KEGG enrichment analysis of differential genes were processed. The PPI network was constructed and Hub genes were screened. Results:Totally,1 640 differentially expressed genes and 1 826 genes associated with differential peak were screened out in HPNE and PANC group; 4 286 differentially expressed genes and 4 489 genes associated with differential peak were screened out in PANC and Capan group. The GO and KEGG enrichment analyses revealed that both groups of differentially expressed genes are enriched in axon morphogenesis,MAPK signaling pathway,and Hippo signaling pathway. Finally,through the construction and analysis of the PPI network,the key gene sets for the HPNE and PANC groups including FN1,SOX2,SELPLG,GREM1,MEF2C,CCR7,FMN1,COL6A3,NR5A2,and CTNNA2 were identified; and the key genes for the PANC and Capan groups including KDR,IL6,MMP2,CXCR4,FLT1,PPARG,SOX2,ETS1,GRIN2A,and NTRK2 were obtained. SOX2 was a common key gene in both groups. Conclusion:SOX2 may plays an important role in the occurrence,development,and metastasis of pancreatic cancer.

参考文献/References:

[1] ZHAO Z,LIU W. Pancreatic cancer:a review of risk factors,diagnosis,and treatment[J]. Technol Cancer Res Treat,2020,19:15330338-20962117.
[2] SIEGEL R L,MILLER K D,FUCHS H E,et al. Cancer statistics,2021[J]. CA Cancer J Clin,2021,71(1):7-33.
[3] MCGUIGAN A,KELLY P,TURKINGTON R C,et al. Pancreatic cancer:a review of clinical diagnosis,epidemiology,treatment and outcomes[J]. World J Gastroenterol,2018,24(43):4846-4861.
[4] KAMISAWA T,WOOD L D,ITOI T,et al. Pancreatic cancer[J]. Lancet,2016,388(10039):73-85.
[5] GORAL V. Pancreatic cancer:pathogenesis and diagnosis[J]. Asian Pac J Cancer Prev,2015,16(14):5619-5624.
[6] HU J X,ZHAO C F,CHEN W B,et al. Pancreatic cancer:a review of epidemiology,trend,and risk factors[J]. World J Gastroenterol,2021,27(27):4298-4321.
[7] AL-HAWARY M M,FRANCIS I R,CHARI S T,et al. Pancreatic ductal adenocarcinoma radiology reporting template:consensus statement of the Society of Abdominal Radiology and the American Pancreatic Association[J]. Radiology,2014,270(1):248-260.
[8] YANG J,XU R,WANG C,et al. Early screening and diagnosis stra-tegies of pancreatic cancer:a comprehensive review[J]. Cancer Co-mmun(Lond),2021,41(12):1257-1274.
[9] WANG D,LIU B,ZHANG Z. Accelerating the understanding of cancer biology through the lens of genomics[J]. Cell,2023,186(8):1755-1771.
[10] KIRBY M K,RAMAKER R C,GERTZ J,et al. RNA sequencing of pancreatic adenocarcinoma tumors yields novel expression patterns associated with long-term survival and reveals a role for ANGPTL4[J]. Mol Oncol,2016,10(8):1169-1182.
[11] WEI X,ZHOU X,ZHAO Y,et al. A 14-gene gemcitabine resistance gene signature is significantly associated with the prognosis of pancreatic cancer patients[J]. Sci Rep,2021,11(1):6087.
[12] REN B,YANG J,WANG C,et al. High-resolution Hi-C maps highlight multiscale 3D epigenome reprogramming during pancreatic cancer metastasis[J]. J Hematol Oncol,2021,14(1):120.
[13] ZHANG Y,LIU T,MEYER C A,et al. Model-based analysis of ChIP-Seq(MACS)[J]. Genome Biol,2008,9(9):R137.
[14] LOVE M I,HUBER W,ANDERS S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2[J]. Genome Biol,2014,15(12):550.
[15] WANG Q,LI M,WU T,et al. Exploring epigenomic datasets by ChIP seeker[J]. Curr Protoc,2022,2(10):e585.
[16] WU T,HU E,XU S,et al. ClusterProfiler 4.0:a universal enrichment tool for interpreting omics data[J]. Innovation(Camb),2021,2(3):100141.
[17] ANDERSSON R,HAGLUND C,SEPPANEN H,et al. Pancreatic cancer - the past,the present,and the future[J]. Scand J Gastroenterol,2022,57(10):1169-1177.
[18] FRANCESCONE R,BARBOSA VENDRAMINI-COSTA D,FRA-NCO-BARRAZA J,et al. Netrin G1 promotes pancreatic tumorigenesis through cancer-associated fibroblast-driven nutritional support and immunosuppression[J]. Cancer Discov,2021,11(2):446-479.
[19] SUN Y,LIU W Z,LIU T,et al. Signaling pathway of MAPK/ERK in cell proliferation,differentiation,migration,senescence and apoptosis[J]. J Recept Signal Transduct Res,2015,35(6):600-604.
[20] PATHRIA G,LEE J S,HASNIS E,et al. Translational reprogramming marks adaptation to asparagine restriction in cancer[J]. Nat Cell Biol,2019,21(12):1590-1603.
[21] CHEN M,ZHANG H,SHI Z,et al. The MST4-MOB4 complex disrupts the MST1-MOB1 complex in the Hippo-YAP pathway and plays a pro-oncogenic role in pancreatic cancer[J]. J Biol Chem,2018,293(37):14455-14469.
[22] GRIMM D,BAUER J,WISE P,et al. The role of SOX family members in solid tumours and metastasis[J]. Semin Cancer Biol,2020,67(Pt 1):122-153.
[23] ZHANG S,XIONG X,SUN Y. Functional characterization of SOX2 as an anticancer target[J]. Signal Transduct Target Ther,2020,5(1):135.
[24] HERREROS-VILLANUEVA M,ZHANG J S,KOENIG A,et al. SOX2 promotes dedifferentiation and imparts stem cell-like features to pancreatic cancer cells[J]. Oncogenesis,2013,2(8):e61.
[25] ZHANG L,WANG D,LI Y,et al. CCL21/CCR7 Axis contributed to CD133+ pancreatic cancer stem-like cell metastasis via EMT and ERK/NF-kappaB pathway[J]. PLoS One,2016,11(8):e0158529.
[26] VAN DUIJNEVELDT G,GRIFFIN MDW,PUTOCZKI T L. Emer-ging roles for the IL-6 family of cytokines in pancreatic cancer[J]. Clin Sci(Lond),2020,134(16):2091-2115.
[27] BIASCI D,SMORAGIEWICZ M,CONNELL C M,et al. CXCR4 inhibition in human pancreatic and colorectal cancers induces an integrated immune response[J]. Proc Natl Acad Sci U S A,2020, 117(46):28960-28970.
[28] ZHAO L,LIU H,LUO S,et al. Associations between genetic variants of KIF5B,FMN1,and MGAT3 in the cadherin pathway and pancreatic cancer risk[J]. Cancer Med,2020,9(24):9620-9631.
[29] ZHANG X,WU D,ALDAROUISH M,et al. ETS-1:a potential target of glycolysis for metabolic therapy by regulating glucose me-tabolism in pancreatic cancer[J]. Int J Oncol,2017,50(1):232-240.

相似文献/References:

[1]李辰运,孙 彤,卓 娜,等.胰腺导管腺癌中腺苷酸激酶4 的表达及临床意义[J].天津医科大学学报,2018,24(01):43.
 LI Chen-yun,SUN Tong,ZHUO Na,et al.Expression of AK4 in pancreatic ductal carcinoma and its clinical significance[J].Journal of Tianjin Medical University,2018,24(02):43.
[2]余 冬,冯 霜,李 俊,等.MiR-199a-3p在胰腺癌中的表达水平及生物信息学分析[J].天津医科大学学报,2019,25(02):119.
 YU Dong,FENG Shuang,LI Jun,et al.The expression of miR-199a-3p in pancreatic cancer and bioinformatics analysis[J].Journal of Tianjin Medical University,2019,25(02):119.
[3]王 艳,郭 志,杨雪玲,等.CT引导下125I粒子植入对缓解胰腺癌疼痛的疗效观察[J].天津医科大学学报,2019,25(02):132.
 WANG Yan,GUO Zhi,YANG Xue-ling,et al.CT-guided iodine-125 seeds implantation therapy for pancreatic cancer patients with pain[J].Journal of Tianjin Medical University,2019,25(02):132.
[4]方闯,田伟军.TGF-β/SMAD4信号通路中基因突变对胰腺癌患者生存的影响[J].天津医科大学学报,2020,26(05):450.
 FANG Chuang,TIAN Wei-jun.The effect of mutations in TGF-β/ SMAD4 signal pathway on the survival of patients with pancreatic cancer[J].Journal of Tianjin Medical University,2020,26(02):450.
[5]刘玉林,臧玉琴,王颖梅,等.基于生物信息学分析筛选宫颈癌进展中的关键基因[J].天津医科大学学报,2022,28(01):8.
 LIU Yu-lin,ZANG Yu-qin,WANG Ying-mei,et al.Identification of key genes in cervical cancer progression by integrated bioinformatics analysis[J].Journal of Tianjin Medical University,2022,28(02):8.
[6]孙奎奎,杨微微,王文靖,等.多囊卵巢综合征关键基因的筛选及其与疾病进展和预后的相关性分析[J].天津医科大学学报,2023,29(06):609.
 SUN Kui-kui,YANG Wei-wei,WANG Wen-jing,et al.Screening of key genes in polycystic ovary syndrome and analysis of their correlation with disease progression and prognosis[J].Journal of Tianjin Medical University,2023,29(02):609.

备注/Memo

备注/Memo:
作者简介 周彤(1999-),女,硕士在读, 研究方向:肿瘤的表观基因组学;通信作者:赵倩, E-mail:zhaoq@tmu.edu.cn。
更新日期/Last Update: 2024-03-20