|本期目录/Table of Contents|

[1]元喆悦,白易,童文,等.基于COVID-19相关基因的肝细胞癌分子分型及预后模型构建与验证[J].天津医科大学学报,2024,30(01):15-22.[doi:10.20135/j.issn.1006-8147.2024.01.0015]
 YUAN Zheyue,BAI Yi,TONG Wen,et al.Molecular typing of hepatocellular carcinoma based on COVID-19 related genes and construction and validation of prognostic model[J].Journal of Tianjin Medical University,2024,30(01):15-22.[doi:10.20135/j.issn.1006-8147.2024.01.0015]
点击复制

基于COVID-19相关基因的肝细胞癌分子分型及预后模型构建与验证(PDF)
分享到:

《天津医科大学学报》[ISSN:1006-8147/CN:12-1259/R]

卷:
30卷
期数:
2024年01期
页码:
15-22
栏目:
肝脏疾病专题
出版日期:
2024-01-01

文章信息/Info

Title:
Molecular typing of hepatocellular carcinoma based on COVID-19 related genes and construction and validation of prognostic model
文章编号:
1006-8147(2024)01-0015-08
作者:
元喆悦12白易2童文3张晓雨3崔壮1
(1.天津医科大学公共卫生学院,天津 300070;2.天津市第一中心医院肝胆胰外科,天津 300192;3.天津医科大学临床医学系,天津 300070)
Author(s):
YUAN Zheyue12BAI Yi2TONG Wen3ZHANG Xiaoyu3CUI Zhuang1
(1.School of Public Health, Tianjin Medical University,Tianjin 300070,China;2.Department of Hepatobiliary Surgery,Tianjin First Central Hospital,Tianjin 300192,China;3.Department of Clinical Medicine,Tianjin Medical University,Tianjin 300070,China)
关键词:
肝细胞癌COVID-19基因分子分型基因标记预后
Keywords:
hepatocellular carcinomaCOVID-19 genesmolecular typinggene signatureprognosis
分类号:
R735.7
DOI:
10.20135/j.issn.1006-8147.2024.01.0015
文献标志码:
A
摘要:
目的:基于新型冠状病毒肺炎(COVID-19)相关基因对肝细胞癌进行分子分型,并建立预后模型。方法:收集GeneCard数据库中COVID-19相关基因,分析其在肝细胞癌患者癌与癌旁组织的基因表达量差异,通过一致聚类分析进行分子分型。使用limma包计算不同分子亚型之间差异表达基因并进行功能富集分析。使用 R 软件包“ESTIMATE”评估不同分子亚型的免疫评分。使用Cox比例风险回归模型和lasso回归构建多基因预后模型,并在其他数据库进行外部验证。结果:基于28个COVID-19相关基因将 TCGA 的365个肝细胞癌(LIHC)样本分成3个亚型,预后较差的C2亚型具有更高的免疫评分。多因素Cox回归分析结果说明5基因模型是肝细胞癌患者的独立预后危险因素。细胞周期、同源重组等肿瘤相关通路随着风险评分的升高而增加,提示高风险组具有更强的侵袭性。结论:构建了基于COVID-19相关基因的肝细胞癌分子亚型,并开发了预后相关的5基因模型(VEGFA、CD14、CD209、REN、PSMD1)。
Abstract:
Objective: To conduct molecular typing of hepatocellular carcinoma based on corona virus disease 2019(COVID-19) related genes and establish a prognostic model. Methods: COVID-19 related genes in the GeneCard database were collected, then the difference in gene expression between cancer and adjacent cancer in patients with hepatocellular carcinoma was analyzed, and molecular typing was performed through consensus clustering analysis. Differentially expressed genes between different molecular subtypes were calculated using the limma package and functional enrichment analysiswas performed. The immune scores of different molecular subtypes were evaluated using the R package "ESTIMATE". A multigene prognostic model was constructed using Cox proportional hazards regression model and lasso regression, and the model was externally validated in other databases. Results: Based on 28 COVID-19-related genes, the 365 liver cell carcinoma(LIHC) samples from TCGA were divided into three subtypes. The C2 subtype, which had a worse prognosis, had a higher immune score. The results of multivariate Cox regression analysis showed that the 5-gene model was an independent prognostic risk factor for patients with liver cancer. Cell cycle, homologous recombination, and other tumor-related pathways increased with the increase of risk score, indicating that the high-risk group was more aggressive. Conclusion: Molecular subtypes for hepatocellular carcinoma based on COVID-19 related genes are constructed and a prognostic 5-gene model(VEGFA, CD14, CD209, REN, PSMD1) is developed.

参考文献/References:

[1] VOGEL A, MEYER T, SAPISOCHIN G, et al. Hepatocellular carcinoma [J]. Lancet, 2022, 400(10360):1345-1362.
[2] LIANG W, GUAN W, CHEN R, et al. Cancer patients in SARS-CoV-2 infection: a nationwide analysis in China [J]. Lancet Oncol, 2020, 21(3):335-337.
[3] AMERE SUBBARAO S. Cancer vs. SARS-CoV-2 induced inflammation, overlapping functions, and pharmacological targeting [J]. Inflammopharmacology, 2021, 29(2):343-366.
[4] PUELLES V G, L?譈TGEHETMANN M, LINDENMEYER M T, et al. Multiorgan and renal tropism of SARS-CoV-2[J]. N Engl J Med, 2020, 383(6):590-592.
[5] SONZOGNI A, PREVITALI G, SEGHEZZI M, et al. Liver histo-pathology in severe COVID 19 respiratory failure is suggestive of vascular alterations[J]. Liver Int, 2020, 40(9):2110-2116.
[6] WANG Y, LIU S, LIU H, et al. SARS-CoV-2 infection of the liver directly contributes to hepatic impairment in patients with COVID-19 [J]. J Hepatol, 2020, 73(4):807-816.
[7] OH K K, ADNAN M, CHO D H. Network pharmacology approach to decipher signaling pathways associated with target proteins of NSAIDs against COVID-19 [J]. Sci Rep, 2021, 11(1):9606.
[8] PIROLA C J, SOOKOIAN S. SARS-CoV-2 virus and liver expression of host receptors: putative mechanisms of liver involvement in COVID-19 [J]. Liver Int, 2020, 40(8):2038-2040.
[9] ZHAO B, NI C, GAO R, et al. Recapitulation of SARS-CoV-2 infection and cholangiocyte damage with human liver ductal organoids [J]. Protein Cell, 2020, 11(10):771-775.
[10] HAMID S, ALVARES DA SILVA M R, BURAK K W, et al. WGO guidance for the care of patients with COVID-19 and liver disease [J]. J Clin Gastroenterol, 2021, 55(1):1-11.
[11] CAO J, CAI X, CHEN M. Liver injury in COVID-19: caution and management [J]. Liver Cancer, 2020, 9(5):625-626.
[12] ABDULLA S, HUSSAIN A, AZIM D, et al. COVID-19-induced hepatic injury: a systematic review and meta-analysis[J]. Cureus, 2020, 12(10):e10923.
[13] KE K, CHEN G, CAI Z, et al. Evaluation and prediction of hepatocellular carcinoma prognosis based on molecular classification [J]. Cancer Manag Res, 2018, 10:5291-5302.
[14] LIU G M, ZENG H D, ZHANG C Y, et al. Identification of a six-gene signature predicting overall survival for hepatocellular carcinoma [J]. Cancer Cell Int, 2019, 19:138.
[15] MAJUMDER J, MINKO T. Recent developments on therapeutic and diagnostic approaches for COVID-19[J]. AAPS J, 2021, 23(1):14.
[16] LIN J, CAO S, WANG Y, et al. Long non-coding RNA UBE2CP3 enhances HCC cell secretion of VEGFA and promotes angiogenesis by activating ERK1/2/HIF-1α/VEGFA signalling in hepatocellular carcinoma [J]. J Exp Clin Cancer Res, 2018, 37(1):113.
[17] POON R T, HO J W, TONG C S, et al. Prognostic significance of serum vascular endothelial growth factor and endostatin in patients with hepatocellular carcinoma [J]. Br J Surg, 2004, 91(10):1354-1360.
[18] LIU C, XU D, XUE B, et al. Upregulation of RUNX1 suppresses proliferation and migration through repressing VEGFA expression in hepatocellular carcinoma[J]. Pathol Oncol Res, 2020, 26(2):1301-1311.
[19] SUN K, WERNSTEDT ASTERHOLM I, KUSMINSKI C M, et al. Dichotomous effects of VEGF-A on adipose tissue dysfunction[J]. Proc Natl Acad Sci U S A, 2012, 109(15):5874-5879.
[20] HOSHINO Y, HAYASHIDA T, HIRATA A, et al. Bevacizumab terminates homeobox B9-induced tumor proliferation by silencing microenvironmental communication[J]. Mol Cancer, 2014, 13:102.
[21] ZUCMAN-ROSSI J, VILLANUEVA A, NAULT J C, et al. Genetic landscape and biomarkers of hepatocellular carcinoma[J]. Gastroenterology, 2015, 149(5):1226-1239.
[22] WU Z, ZHANG Z, LEI Z, et al. CD14: biology and role in the pathogenesis of disease[J]. Cytokine Growth Factor Rev, 2019, 48:24-31.
[23] CHEAH M T, CHEN J Y, SAHOO D, et al. CD14-expressing cancer cells establish the inflammatory and proliferative tumor microenvironment in bladder cancer[J]. Proc Natl Acad Sci U S A, 2015, 112(15):4725-4730.
[24] HEISKALA M, LEIDENIUS M, JOENSUU K, et al. High expression of CCL2 in tumor cells and abundant infiltration with CD14 positive macrophages predict early relapse in breast cancer[J]. Virchows Arch, 2019, 474(1):3-12.
[25] WANG J, GUO X, YU S, et al. Association between CD14 gene polymorphisms and cancer risk: a meta-analysis[J]. PLoS One, 2014, 9(6):e100122.
[26] PU X, DONG C, ZHU W, et al. Silencing stomatin-like protein 2 attenuates tumor progression and inflammatory response through repressing CD14 in liver cancer[J]. Onco Targets Ther, 2019, 12:7361-7373.
[27] KOIZUMI Y, KAGEYAMA S, FUJIYAMA Y, et al. RANTES -28G delays and DC-SIGN-139C enhances AIDS progression in HIV type 1-infected Japanese hemophiliacs[J]. AIDS Res Hum Retroviruses, 2007, 23(5):713-719.
[28] RAHIMI N. C-type Lectin CD209L/L-SIGN and CD209/DC-SIGN: cell adhesion molecules turned to pathogen recognition receptors[J]. Biology (Basel), 2020, 10(1):1.
[29] HU B, WANG Z, ZENG H, et al. Blockade of DC-SIGN(+) tumor-associated macrophages reactivates antitumor immunity and improves immunotherapy in muscle-invasive bladder cancer[J]. Ca-ncer Res, 2020, 80(8):1707-1719.
[30] LI X, NA H, XU L, et al. DC-SIGN mediates gastric cancer progression by regulating the JAK2/STAT3 signaling pathway and affecting LncRNA RP11-181G12.2 expression[J]. Biomed Pharmaco-ther, 2020, 121:109644.
[31] CORMIER E G, DURSO R J, TSAMIS F, et al. L-SIGN (CD209L) and DC-SIGN(CD209) mediate transinfection of liver cells by hepatitis C virus[J]. Proc Natl Acad Sci U S A, 2004, 101(39):14067-14072.
[32] VANNBERG F O, CHAPMAN S J, KHOR C C, et al. CD209 genetic polymorphism and tuberculosis disease[J]. PLoS One, 2008, 3(1):e1388.
[33] YU H R, CHANG W P, WANG L, et al. DC-SIGN (CD209) promoter -336 A/G (rs4804803) polymorphism associated with susceptibility of Kawasaki disease[J]. Sci World J, 2012, 2012:634835.
[34] SARKAR S, GUPTA V, KUMAR A, et al. M235T polymorphism in the AGT gene and A/G(I8-83) substitution in the REN gene correlate with end-stage renal disease[J]. Nephron, 2015, 129(2):104-108.
[35] XIONG Q, FISCHER S, KAROW M, et al. ATG16 mediates the autophagic degradation of the 19S proteasomal subunits PSMD1 and PSMD2[J]. Eur J Cell Biol, 2018, 97(8):523-532.
[36] JONKER P K, VAN DAM G M, OOSTING S F, et al. Identification of novel therapeutic targets in anaplastic thyroid carcinoma using functional genomic mRNA-profiling: paving the way for new avenues?[J]. Surgery, 2017, 161(1):202-211.

相似文献/References:

[1]周冷潇,韩 涛.慢性乙型病毒性肝炎肝硬化发生肝细胞癌的危险因素分析[J].天津医科大学学报,2017,23(03):214.
 ZHOU Leng-xiao,HAN Tao.Risk factors of hepatocellular carcinoma in patients with hepatitis B virus-related liver cirrhosis[J].Journal of Tianjin Medical University,2017,23(01):214.
[2]周冷潇,韩 涛,刘 芳.无创肝纤维化指标结合甲胎蛋白对乙型肝炎相关肝细胞癌的评估[J].天津医科大学学报,2017,23(05):415.
 ZHOU Leng-xiao,HAN Tao,LIU Fang.Assessment of non-invasive fibrosis indexes with alpha-fetoprotein?for? hepatitis B virus-related hepatocellular carcinoma[J].Journal of Tianjin Medical University,2017,23(01):415.
[3]张自立,石文霞,李 霖,等.肝癌血清中miRNA-183的表达及临床意义[J].天津医科大学学报,2017,23(06):519.
 ZHANG Zi-li,?SHI Wen-xia,LI Lin,et al.Expression and significance of serum microRNA-183 in hepatocellular carcinoma[J].Journal of Tianjin Medical University,2017,23(01):519.
[4]侯振宇,孔银龙,孙 林,等.92例晚期肝细胞癌患者肝切除预后及危险因素分析[J].天津医科大学学报,2018,24(05):425.
 HOU Zhen-yu,KONG Yin-long,SUN Lin,et al.Prognosis and survival risk factors for 92 advanced hepatocellular carcinoma patients after hepatectomy[J].Journal of Tianjin Medical University,2018,24(01):425.
[5]胡 源,许戈良,荚卫东,等.C1QL1蛋白在原发性肝细胞癌中的表达及其临床意义[J].天津医科大学学报,2019,25(04):329.
 HU Yuan,XU Ge-liang,JIA Wei-dong,et al.Expressions of C1QL1 protein inprimaryhepatocellular carcinoma and its clinical significance[J].Journal of Tianjin Medical University,2019,25(01):329.
[6]张萃萃,邓为民.基因表达谱分析肝细胞癌的特征基因[J].天津医科大学学报,2020,26(06):514.
 ZHANG Cui-cui,DENG Wei-min.Gene expression profiling reveals important characteristic genes in hepatocellular carcinoma[J].Journal of Tianjin Medical University,2020,26(01):514.
[7]张杨,游阿彬,齐寒,等.负载化疗药物的外泌体对肝癌的靶向治疗研究[J].天津医科大学学报,2021,27(03):229.
 ZHANG Yang,YOU A-bin,QI Han,et al.Tumor-derived exosomes mediate targeted therapy in hepatocellular carcinoma mice[J].Journal of Tianjin Medical University,2021,27(01):229.
[8]王凤松,朱刘洋,白易,等.基于肿瘤突变负荷构建肝细胞癌风险评分预后模型[J].天津医科大学学报,2022,28(01):20.
 WANG Feng-song,ZHU Liu-yang,BAI Yi,et al.Identification of a risk score prognostic model of hepatocellular carcinoma based on tumor mutation burden[J].Journal of Tianjin Medical University,2022,28(01):20.
[9]赵耕,张盈莹,卓永,等.藏区慢性乙型肝炎患者使用PAGE-B模型对肝细胞癌的风险预测研究[J].天津医科大学学报,2022,28(06):654.
 ZHAO Geng,ZHANG Ying-ying,ZHUO Yong,et al.Risk prediction of hepatocellular carcinoma using the PAGE-B model in Tibetan patients with chronic hepatitis B[J].Journal of Tianjin Medical University,2022,28(01):654.
[10]张华,范松,刘冀琴,等.miR-129-5p通过靶向SALL4抑制肝癌细胞增殖、迁移和侵袭的实验研究[J].天津医科大学学报,2024,30(01):11.[doi:10.20135/j.issn.1006-8147.2024.01.0011]
 ZHANG Hua,FAN Song,LIU Jiqin,et al.The experimental study of miR-129-5p inhibiting proliferation, migration, and invasion of hepatocellular carcinoma by targeting to SALL4[J].Journal of Tianjin Medical University,2024,30(01):11.[doi:10.20135/j.issn.1006-8147.2024.01.0011]

备注/Memo

备注/Memo:
作者简介元喆悦(1989-),女,研究实习员,研究生在读, 研究方向:流行病与卫生统计学;通信作者:崔壮, E-mail,:cuizhuang@tmu.edu.cn。
更新日期/Last Update: 2024-01-01