|本期目录/Table of Contents|

[1]司蕊豪,刘羽茜,朱仲康,等.基于生信分析对阿尔茨海默病炎症相关关键基因的筛选及鉴定[J].天津医科大学学报,2023,29(05):486-493.
 SI Rui-hao,LIU Yu-xi,ZHU Zhong-kang,et al.Screening and identification of key genes associated with Alzheimer′s disease inflammation based on bioinformatics analysis[J].Journal of Tianjin Medical University,2023,29(05):486-493.
点击复制

基于生信分析对阿尔茨海默病炎症相关关键基因的筛选及鉴定(PDF)
分享到:

《天津医科大学学报》[ISSN:1006-8147/CN:12-1259/R]

卷:
29卷
期数:
2023年05期
页码:
486-493
栏目:
生物信息学
出版日期:
2023-09-20

文章信息/Info

Title:
Screening and identification of key genes associated with Alzheimer′s disease inflammation based on bioinformatics analysis
文章编号:
1006-8147(2023)05-0486-08
作者:
司蕊豪1刘羽茜1朱仲康2王旭3侯文晓1赵丹玉1
(辽宁中医药大学中西医结合学院1.生物化学教研室;2.生理学教研室;3.组织与胚胎学教研室,沈阳 110847)
Author(s):
SI Rui-hao1LIU Yu-xi1ZHU Zhong-kang2WANG Xu3HOU Wen-xiao1ZHAO Dan-yu1
(1.Biochemistry Teaching and Research Section;2.Physiology Teaching and Research Office;3.Histology Embryology Teaching and Research Section,Department of College of Integrated Traditional Chinese and Western Medicine,Liaoning University of Traditional Chinese Medicine,Shenyang 110847,China)
关键词:
阿尔茨海默病炎症生信分析
Keywords:
Alzheimer′s diseaseinflammationbioinformatics analysis
分类号:
R742.8+9
DOI:
-
文献标志码:
A
摘要:
目的:筛选并鉴定阿尔茨海默病(AD)神经炎症相关关键基因。方法:用R语言limma包分别筛选GEO数据库中的数据集GSE144459(Healthy=16,AD=16)和GSE135999(Healthy=6,AD=7)中的差异基因(DEGs);用在线韦恩图工具对上述获得的差异表达基因(DEG1、DEG2)与NCBI数据库获得(IRGs)取交集,以获得差异表达的IRGs;用R语言clusterProfiler包对其进行功能富集分析;通过STRING数据库(https://string-db.org)和Cytoscape软件对差异表达IRGs进行PPI网络构建,并用cytoHubba插件来筛选PPI中的关键节点作为候选基因。后续用于LASSO回归分析进一步筛选特征基因并构建分类器,用数据集GSE122063(AD=56,Control=44)验证特征基因的表达并绘制箱线图。结果:本研究共获得106个差异表达的IRGs。富集分析与金黄色葡萄球菌感染、中性粒细胞外陷阱形成、Toll样受体、FcγR介导吞噬作用等功能及信号通路相关。经过PPI网络的构建、LASSO回归分析、分类器构建及受试者工作特征(ROC)曲线绘制以及特征基因的表达验证,最终得出Fcgr2b、Cd14、Fcgr1、Fcgr3、Ly86在AD中具有较强的预测诊断能力。结论:Fcgr2b、Cd14、Fcgr1、Fcgr3、Ly86 在AD中起着关键作用,可以作为AD潜在的诊断和治疗靶点。
Abstract:
Objective:To screen and identify key genes associated with neuroinflammation in Alzheimer′s disease(AD). Methods: The limma package in R language was used to screen the differentially expressed genes(DEGs) in the datasets GSE144459(Healthy=16,AD=16) and GSE135999(Healthy=6,AD=7) in the GEO database,respectively. The online VennDiagram tool was used to intersect the above differentially expressed genes(DEG1,DEG2) with the inflammation-related genes(IRGs) in NCBI database to obtain the differentially expressed IRGs. The clusterProfiler package in R language was used to perform functional enrichment analysis. PPI networks were constructed for differentially expressed IRGs using the STRING database(https://string-db.org) and Cytoscape software,and key nodes in the PPI were screened as candidate genes using the cytoHubba plugin. Subsequently,LASSO regression analysis was performed to further screen feature gene and classifier construction,and the expression of the feature gene was verified using the dataset GSE122063(AD=56,Control=44) and the box plot was drawn. Results: A total of 106 differentially expressed IRGs were obtained in this study. Enrichment analysis was associated with Staphylococcus aureus infection,neutrophil extracellular trap formation,Toll-like receptor signaling pathway,FcγR-mediated phagocytosis and other functions and signaling pathways. After the construction of PPT network,LASSO regression analysis,classifier construction,ROC curve plotting and expression verification of feature genes,it is concluded that the Fcgr2b,Cd14,Fcgr1,Fcgr3,and Ly86 had strong predictive and diagnostic capabilities in AD. Conclusion: Fcgr2b,Cd14,Fcgr1,Fcgr3,and Ly86 play key roles in AD and can be used as potential diagnostic and therapeutic targets for AD.

参考文献/References:

[1] SH Y,LIU B,ZHANG J,et al. Application of artificial intelligence modeling technology based on fluid biopsy to diagnose Alzheimer's disease[J]. Front Aging Neurosci,2021,13:768229.
[2] CUMMINGS J,LEE G,RITTER A,et al. Alzheimer′s disease drug development pipeline:2018[J].Alzheimers Dement(N Y),2018,4:195-214.
[3] 赵娜,夏杰,张晨斐,等. 运动裨益AD的机制:大脑糖代谢紊乱和特征性病理症状的协同改善[J]. 中国体育科技,2023,59(2):43-49.
[4] AKIYAMA H,BARGER S,BARNUM S,et al. Inflammation and Alzheimer′s disease[J]. Neurobiol Aging,2000,21(3): 383-421.
[5] WILSON C J,FINCH C E,COHEN H J. Cytokines and cognition--the case for a head-to-toe inflammatory paradigm[J]. J Am Geriatr Soc,2002,50(12):2041-2056.
[6] OCHI S,IGA J I,FUNAHASHI Y,et al. Identifying blood transcriptome biomarkers of Alzheimer′s disease using transgenic mice[J]. Mol Neurobiol,2020,57(12):4941-4951.
[7] UENO M,YOSHINO Y,MORI H,et al. Association study and meta-analysis of polymorphisms and blood mRNA expression of the aldh2 gene in patients with Alzheimer′s disease[J]. J Alzheimers Dis,2022,87(2):863-871.
[8] HOU Y,WEI Y,LAUTRUP S,et al. NAD+ supplementation reduces neuroinflammation and cell senescence in a transgenic mouse model of Alzheimer′s disease via cgas-sting[J]. Proc Natl Acad Sci U S A,2021,118(37):e2011226118.
[9] RITCHIE M E,PHIPSON B,WU D,et al. Limma powers differential expression analyses for RNA-sequencing and microarray studies[J]. Nucleic Acids Res,2015,43(7):e47.
[10] WICKHAM H. Ggplot2 elegant graphics for data analysis introduction[M]. New York,NY:Springer,2009:1-7.
[11] YU G,WANG L G,HAN Y,et al. ClusterProfiler: an R package for comparing biological themes among gene clusters[J]. OMICS,2012,16(5):284-287.
[12] ENGEBRELSEN S,BOHLIN J. Statistical predictions with glmnet[J]. Clin Epigenetics,2019,11(1):123.
[13] ROBIN X,TURCK N,HAINARD A,et al. pROC:an open-source package for r and s+to analyze and compare ROC curves[J].BMC Bioinformatics,2011,12:77.
[14] CONWAY J R,LEX A,GEHLENBORG N. UpSetR:an R package for the visualization of intersecting sets and their properties[J]. Bioinformatics,2017,33(18):2938-2940.
[15] GU X,ZHOU J,ZHOU Y,et al. Huanglian jiedu decoction remo dels the periphery microenvironment to inhibit Alzheimer's disease progression based on the "brain-gut"axis through multiple integrated omics[J]. Alzheimers Res Ther,2021,13(1):44.
[16] 黄丽萍,卢龙辉,杨喜洋,等. 基于TLR4/NF-κB/NLRP3通路探讨二精丸减轻AD大鼠神经炎症的作用及机制[J].中国中药杂志,2023,48(3):770-777.
[17] NAGELKERKE S Q,SCHMIDT D E,DE HAAS M,et al. Genetic variation in low-to-medium-affinity Fcγ receptors: functional consequences,disease associations,and opportunities for personalized medicine[J]. Front Immunol,2019,10:2237.
[18] 孙健茹. 激活型Fc-gamma受体参与阿尔兹海默病的机制研究[D].北京协和医学院,2022.
[19] 黄嵘希. 过表达FcγRIIB对寡聚体Aβ刺激下的小胶质细胞的影响[D]. 华中科技大学,2016.
[20] 孙杨杨. FcγRⅡb在小鼠抗病毒免疫中的作用[D].河南农业大学,2021.
[21] DEBERGE M,YEAP X Y,DEHN S,et al. Mertk cleavage on resident cardiac macrophages compromises repair after myocardial ischemia reperfusion injury[J]. Circ Res,2017,121 (8):930-940.
[22] 陆丽红,丁喆,简苗苗,等. CD14/TLR1- TLR2/p38 MAPK信号通路在莱姆病发病机制中的作用[J]. 生命科学研究,2020,24 (1):81-86.
[23] 凌杰兵,马斌. 可溶性sCD14-ST及CD14~+单核细胞在老年ICU脓毒症患者早期诊断和评估中的价值[J].中国老年学杂志,2022, 42(20):5042-5045.
[24] 金肇权,张文彬,陈欣,等. CD14-TLR4-NF-κB信号传导通路在脂多糖诱导ALI/ARDS中的作用及机制研究[J].安徽医药,2022,26(4): 643-647.
[25] 李汉颖,李汉宇,李增祥. CD14 mRNA、SORL1 mRNA在AD病人中的表达及与认知功能的相关性[J]. 中西医结合心脑血管病杂志,2021,19(19):3406-3410.
[26] NAGAI Y,SHIMAZU R,OGATA H,et al. Requirement for MD-1 in cell surface expression of RP105/CD180 and B-cell responsiveness to lipopolysaccharide[J].Blood,2002,99(5):1699 -1705.
[27] SASAKI S,NAGAI Y,YANAGIBASHI T,et al. Serum soluble MD-1 levels increase with disease progression in autoimmune prone MRL(lpr/lpr) mice[J]. Mol Immunol,2012,49(4): 611-620.
[28] SU S,ZHU H,XU X,et al. DNA methylation of the Ly86 gene is associated with obesity,insulin resistance,and inflammation[J]. Twin Res Hum Genet,2014,17(3):183-191.
[29] THOMAS JENNINGS R,ODKHUU E,NAKASHIMA A,et al. Inflammatory responses increase secretionof MD-1 protein[J].IntImmunol,2016,28(10):503-512.

相似文献/References:

[1]姜明月,于敏,李文,等.叶酸对N2a-APP695细胞Tau蛋白及其Ser396位点磷酸化的调控[J].天津医科大学学报,2013,19(05):365.
[2]马晓芳,童静凯,牛文彦.肥胖和缺氧对小鼠原代脂肪细胞分泌TNFα的影响[J].天津医科大学学报,2014,20(01):1.
 MA Xiao-fang,TONG Jing-kai,NIU Wen-yan.Effect of obesity and hypoxia on TNFa secretion by primary adipocytes in mice[J].Journal of Tianjin Medical University,2014,20(05):1.
[3]崔占前,徐延敏.脂蛋白相关性磷脂酶A2及高敏C反应蛋白与左心房内径的关系[J].天津医科大学学报,2015,21(03):196.
 CUI Zhan-qian,XU Yan-min.Relationship between plasma lipoprotein-associated phospholipase A2, high sensitivity C reactive protein and left atrial diameter[J].Journal of Tianjin Medical University,2015,21(05):196.
[4]陈雅婧,王 勇 综述,刘运德,等.C1QBP的多种配体及其在感染和炎症中的研究进展[J].天津医科大学学报,2016,22(01):84.
[5]付雪斐,李 靖,孙凤仙,等.β片层阻断肽对AD模型小鼠学习记忆及PI3K/AKT信号通路的影响[J].天津医科大学学报,2016,22(05):391.
 FU Xue-fei,LI Jing,SUN Feng-xian,et al. Effect of β-sheet breaker peptide on learning and memory and PI3K /AKT? signaling pathway in AD model mice ? [J].Journal of Tianjin Medical University,2016,22(05):391.
[6]赵一贺,张 畅,牛文彦.电脉冲刺激的骨骼肌细胞条件培养基逆转内皮细胞胰岛素抵抗和功能障碍[J].天津医科大学学报,2017,23(01):1.
 ZHAO Yi-he,ZHANG Chang,NIU Wen-yan.Conditional medium from electric pulse-stimulated C2C12 skeletal muscle cells reverses insulin resistance and endothelial dysfunction in endothelial cells[J].Journal of Tianjin Medical University,2017,23(05):1.
[7]陈文博,寇亚芬,张引国,等.贝沙罗汀拮抗Aβ25-35诱导的海马CA1区锥体神经元谷氨酸能突触传递的抑制效应[J].天津医科大学学报,2017,23(04):285.
 CHEN Wen-bo,KOU Ya-fen,ZHANG Yin-guo,et al.Antagonistic effect of bexarotene on Aβ25-35 -Induced inhibiting action in glutamatergic synaptic transmission of hippocampal CA1 pyramidal neurons[J].Journal of Tianjin Medical University,2017,23(05):285.
[8]孙凤仙,徐淑梅.H102-BD经鼻腔给药后对双转基因AD小鼠行为学及脑内APP和Aβ蛋白表达的影响[J].天津医科大学学报,2017,23(05):385.
 SUN Feng-xian,XU Shu-mei.Effect of H102-BD on behavior and the expression of APP and Aβ in PAP double transgenic AD mice after intranasal administration[J].Journal of Tianjin Medical University,2017,23(05):385.
[9]杨蕊,许华,王兵,等.IL-18在脓毒症及脓毒症休克中预测死亡的作用[J].天津医科大学学报,2018,24(02):142.
 YANG Rui,XU Hua,WANG Bing,et al.Role of IL-18 in predicting mortality of patients with sepsis and septic shock[J].Journal of Tianjin Medical University,2018,24(05):142.
[10]孙晓倩 综 述,吴 伟 审 校.睡眠剥夺与中枢神经系统疾病关系的研究进展[J].天津医科大学学报,2018,24(05):461.

备注/Memo

备注/Memo:
基金项目 国家自然科学基金资助项目(81803854);辽宁省教育厅项目资助(LJKMZ20221317)
作者简介 司蕊豪(1993-),女,硕士在读,研究方向:中医药防治代谢疾病;通信作者:赵丹玉,E-mail:danyu1978@163.com。
更新日期/Last Update: 2023-09-25