[1] YE G,BALDWIN D S,HOU R. Anxiety in asthma:a systematic review and meta-analysis[J]. Psychol Med,2021,51(1):11-20.
[2] REDDEL H K,BACHARIER L B,BATEMAN E D,et al. Global initiative for asthma strategy 2021:executive summary and rationale for key changes[J].Eur Respir J,2021,59(1):2102730.
[3] EBMEIER S,THAYABARAN D,BRAITHWAITE I,et al. Trends in international asthma mortality:analysis of data from the WHO Mortality Database from 46 countries(1993-2012)[J]. Lancet,2017, 10098:935-945.
[4] SUN S,YAO M,YUAN L,et al. Long-chain non-coding RNA n337374 relieves symptoms of respiratory syncytial virus-induced asthma by inhibiting dendritic cell maturation via the CD86 and the ERK pathway[J]. Allergol Immunopathol(Madr),2021,49(3):100-107.
[5] GYSENS F,MESTDAGH P,DE BONY DE LAVERGNE E,et al. Unlocking the secrets of long non-coding RNAs in asthma[J]. Thorax,2022,77(5):514-522.
[6] LIANG J,LIU X H,CHEN X M,et al. Emerging roles of non-coding RNAs in childhood asthma[J]. Front Pharmacol,2022,17,13:856104.
[7] QU S Y,HE Y L,ZHANG J,et al. Transcription factor RBP-J-mediated signalling regulates basophil immunoregulatory function in mouse asthma model[J]. Immunology,2017,152(1):115-124.
[8] BARRETT T,WILHITE S E,LEDOUX P,et al. NCBI GEO:archive for functional genomics data sets—update[J]. Nucleic Acids Res,2013,41(Database issue):D991-995.
[9] CAMIOLO M J,ZHOU X,WEI Q,et al. Machine learning implicates the IL-18 signaling axis in severe asthma[J]. JCI Insight,2021,6(21):e149945.
[10] SINGHANIA A,RUPANI H,JAYASEKERA N,et al. Altered epithelial gene expression in peripheral airways of severe asthma[J].PLoS One,2017,12(1):e0168680.
[11] ZHOU Y,ZHOU B,PACHE L,et al. Metascape provides a biologist-oriented resource for the analysis of systems-level data sets[J]. Nat Commun,2019,10(1):1523.
[12] LIAO Y,WANG J,JAEHNIG E J,et al. WebGestalt 2019:gene set analysis toolkit with revamped UIs and APIs[J]. Nucleic Acids Res,2019,47(W1):W199-W205.
[13] JASSAL B,MATTHEWS L,VITERI G,et al. The reactome pathway knowledgebase[J]. Nucleic Acids Res,2020,48(D1) D498-D503.
[14] SZKLARCZYK D,GABLE A L,NASTOU K C,et al. The STRING database in 2021:customizable protein-protein networks,and functional characterization of user-uploaded gene/measurement sets[J]. Nucleic Acids Res,2021,49(D1):D605-D612.
[15] SHANNON P,MARKIEL A,OZIER O,et al. Cytoscape:a software environment for integrated models of biomolecular interaction networks[J]. Genome Res,2003,13(11):2498-2504.
[16] KARAGKOUNI D,PARASKEVOPOULOU M D,CHATZOPOULOS S,et al. DIANA-TarBase v8:a decade-long collection of experimentally supported miRNA-gene interactions[J]. Nucleic Acids Res,2018,46(D1):D239-D245.
[17] MCGEARY S E,LIN K S,SHI C Y,et al. The biochemical basis of microRNA targeting efficacy[J]. Science,2019,366(6472):eaav1741.
[18] LI J H,LIU S,ZHOU H,et al. starBase v2.0:decoding miRNA-ceRNA,miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data[J]. Nucleic Acids Res,2014,42(Database issue):D92-D97.
[19] PARASKEVOPOULOU M D,VLACHOS I S,KARAGKOUNI D,et al. DIANA-LncBase v2:indexing microRNA targets on non-coding transcripts[J]. Nucleic Acids Res,2016,44(D1):D231-D238.
[20] ROPHINA M,SHARMA D,POOJARY M,et al. Circad:a comprehensive manually curated resource of circular RNA associated with diseases[J]. Database(Oxford),2020,2020:baaa019.
[21] HU H,MIAO Y R,JIA L H,et al. AnimalTFDB 3.0:a comprehensive resource for annotation and prediction of animal transcription factors[J]. Nucleic Acids Res,2019,47(D1):D33-D38.
[22] CASTRO-MONDRAGON J A,RIUDAVETS-PUIG R,RAULUSEVICIUTE I,et al. JASPAR 2022:the 9th release of the open-access database of transcription factor binding profiles[J]. Nucleic Acids Res,2022,50(D1):D165-D173.
[23] FRESHOUR S L,KIWALA S,COTTO K C,et al. Integration of the drug-gene interaction database(DGIdb 4.0) with open crowdsource efforts[J]. Nucleic Acids Res,2021,49(D1):D1144-D1151.
[24] RILEY I L,JACKSON B,CRABTREE D,et al. A scoping review of international barriers to asthma medication adherence mapped to the theoretical domains framework[J]. J Allergy Clin Immunol Pract,2021,9(1):410-418.e4.
[25] TANG H H,TEO S M,BELGRAVE D C,et al. Trajectories of childhood immune development and respiratory health relevant to asthma and allergy[J]. Elife,2018,7:e35856.
[26] CHING JCH,LOBANOVA L,LOEWEN M E. Secreted hCLCA1 is a signaling molecule that activates airway macrophages[J].PLoS One,2013,8(12):e83130.
[27] CARPAGNANO G E,SOCCIO P,SCIOSCIA G,et al. The potential role of airways periostin in the clinical practice of patients affected by idiopathic pulmonary fibrosis[J]. Rejuvenation Res,2021,24(4):302-306.
[28] SORIA-CASTRO R,MENESES-PREZA Y G,RODR?魱GUEZ-L?譫PEZ G M,et al. Severe COVID-19 is marked by dysregulated serum levels of carboxypeptidase A3 and serotonin[J]. J Leukoc Biol,2021,110(3):425-431.
[29] ARIPOVA A,AKPAROVA A,BERSIMBAEV R. The potential role of miRNA-19b-3p and miRNA-320c in patients with moderate bronchial asthma[J]. Microrna,2020,9(5):373-377.
[30] LIANG Y,FENG Y,WU W,et al. microRNA-218-5p plays a protective role in eosinophilic airway inflammation via targeting δ-catenin,a novel catenin in asthma[J]. Clin Exp Allergy,2020,50(1):29-40.
[31] YASHIRO T,YAMAMOTO M,ARAUMI S,et al. PU.1 and IRF8 modulate activation of NLRP3 inflammasome via regulating its expression in human macrophages[J]. Front Immunol,2021,12:649572.
[32] QIN G,SUN Y,GUO Y,et al. PAX5 activates telomerase activity and proliferation in keloid fibroblasts by transcriptional regulation of SND1,thus promoting keloid growth in burn-injured skin[J]. Inflamm Res,2021,70(4):459-472.
[33] GUPTA R,LEON F,THOMPSON C M,et al. Global analysis of human glycosyltransferases reveals novel targets for pancreatic cancer pathogenesis[J]. Br J Cancer,2020,122(11):1661-1672.
[34] STEWART A G,XIA Y C,HARRIS T,et al. Plasminogen-stimulated airway smooth muscle cell proliferation is mediated by urokinase and annexin A2,involving plasmin-activated cell signalling[J]. Br J Pharmacol,2013,170(7):1421-1435.
[1]马利锋,刘长山,王雪艳,等.呼出气一氧化氮测定在儿童哮喘控制评估中的价值[J].天津医科大学学报,2013,19(05):407.
[2]杨晓丽,蒋 萍.超重对哮喘患者肺功能及呼出气一氧化氮的影响[J].天津医科大学学报,2013,19(06):493.
YANG Xiao-li,JIANG Ping.Effect of overweight on lung function and fractional exhaled nitricoxide of asthma patients[J].Journal of Tianjin Medical University,2013,19(03):493.
[3]周秋梅,刘长山.中短程低剂量吸入糖皮质激素对哮喘儿童生长的影响[J].天津医科大学学报,2016,22(04):322.
ZHOU Qiu-mei,LIU Chang-shan.Efficacy of short-medium term and low dose inhalation of corticosteroids in treatment of asthma and its effect on growth in children[J].Journal of Tianjin Medical University,2016,22(03):322.
[4]刘梦昭,刘长山.粉尘螨滴剂舌下免疫治疗哮喘伴过敏性鼻炎患儿的临床疗效及安全性[J].天津医科大学学报,2018,24(04):344.
LIU Meng-zhao,LIU Chang-shan.Efficacy and safety of sublingual immunotherapy with dermatophagoides farinae drops for children with allergic rhinitis and asthma[J].Journal of Tianjin Medical University,2018,24(03):344.
[5]熊蕾蕾,张松林,张向峰,等.R848对哮喘患儿外周血中IFN-γ、IL-33和IgE表达的影响及临床意义[J].天津医科大学学报,2021,27(06):623.
XIONG Lei-lei,ZHANG Song-lin,ZHANG Xiang-feng,et al.The effect of R848 on the expression of IFN-γ, IL-33 and IgE in the peripheral blood of children with asthma and its clinical significance[J].Journal of Tianjin Medical University,2021,27(03):623.
[6]茹仙古丽·吾买尔,索睿 综述,赵晓赟 审校.数字疗法在哮喘疾病管理中的应用[J].天津医科大学学报,2023,29(03):344.
[7]索睿,郝天旭,茹仙古丽·吾买尔 综述,等.间充质干细胞来源的外泌体治疗哮喘的研究进展[J].天津医科大学学报,2023,29(06):673.
[8]董玉梅,杜雪.早发性卵巢功能不全的lncRNA-miRNA-mRNA网络的构建和生物信息学分析[J].天津医科大学学报,2024,30(05):422.[doi:10.20135/j.issn.1006-8147.2024.05.0422]
DONG Yumei,DU Xue.Construction and bioinformatics analysis of lncRNA-miRNA-mRNA network in premature ovarian insufficiency[J].Journal of Tianjin Medical University,2024,30(03):422.[doi:10.20135/j.issn.1006-8147.2024.05.0422]