|本期目录/Table of Contents|

[1]姜俐洋,史昱,黄传,等.8周不同时间点有氧运动干预对脑卒中大鼠神经 功能的影响[J].天津医科大学学报,2020,26(04):324-328.
 JIANG Li-yang,SHI Yu,HUANG Chuan,et al.Effects of 8 weeks aerobic exercise intervention on neurological function in rats with cerebral infarction at different time points[J].Journal of Tianjin Medical University,2020,26(04):324-328.
点击复制

8周不同时间点有氧运动干预对脑卒中大鼠神经 功能的影响(PDF)
分享到:

《天津医科大学学报》[ISSN:1006-8147/CN:12-1259/R]

卷:
26卷
期数:
2020年04期
页码:
324-328
栏目:
基础医学
出版日期:
2020-07-15

文章信息/Info

Title:
Effects of 8 weeks aerobic exercise intervention on neurological function in rats with cerebral infarction at different time points
文章编号:
1006-8147(2020)04-0324-05
作者:
姜俐洋12史昱1黄传1苏悦1万春晓1
(1. 天津医科大学总医院康复医学科,天津300052;2.天津市海河医院康复医学科,天津300350)
Author(s):
JIANG Li-yang12SHI Yu1HUANG Chuan1SU Yue1WAN Chun-xiao1
(1.Department of Rehabilitation Medicine, General Hospital, Tianjin Medical University, Tianjin 300052, China;2.Department of Rehabilitation Medicine, Tianjin Haihe Hospital, Tianjin 300350,China)
关键词:
脑缺血有氧运动干预血管内皮生长因子神经功能
Keywords:
cerebral ischemia aerobic exercise intervention vascular endothelial growth factor neurological function
分类号:
R493+R743.3
DOI:
-
文献标志码:
A
摘要:
目的:探究脑卒中后不同时间点有氧运动干预对神经功能的影响及其分子机制。方法:将24只大鼠随机分为假手术组(SHAM)、静息组(SED)、术后1 d开始运动组(EX-1D)、术后1周开始运动组(EX-1W),分别于术后进行8周干预,观察术后1周及8周干预结束后的改良神经功能评分(mNSS),脑部相对各向异性分数(rFA),及8周干预结束时脑组织梗死区周围血管内皮生长因子(VEGF)的表达。结果:干预8周后,与SED组相比,(1)EX-1D组大鼠mNSS(2.67±0.817)显著降低(P=0.002),且明显低于EX-1W组(3.83±1.169,P=0.049);(2)EX-1D组(0.72±0.071)和EX-1W组(0.62±0.076)大鼠脑部rFA值均明显升高(均P<0.001),且EX-1D组优于EX-1W组(P=0.005);(3)EX-1D组(P=0.000)和EX-1W组(P=0.005)脑组织VEGF表达明显升高,且EX-1D组表达量高于EX-1W组(P=0.060);(4)在EX-1D、EX-1W组中,VEGF与mNSS评分呈负相关(r=-0.816,PEX-1D=0.048;r=-0.829,PEX-1W=0.041)。在SED、EX-1D、EX-1W组中,VEGF与rFA值呈正相关(r=0.872,PSED=0.024;r=0.831,PEX-1D=0.04;r=0.857,PEX-1W=0.029)。在EX-1W组中,rFA值与mNSS评分呈负相关(r=-0.854,P=0.03)。结论:卒中后1 d和卒中后1周进行8周的运动干预,可以通过上调大鼠脑组织VEGF的表达,促进神经纤维生长、发挥神经保护和改善作用,且卒中后1 d开始干预的效果更佳。
Abstract:
Objective: To investigate the effects of aerobic exercise intervention on neurological function at different time points after stroke and its molecular mechanism. Methods: Twenty-four rats were randomly divided into sham operation group(SHAM), sedentary group (SED), exercise group 1 day after surgery (EX-1D), and exercise group 1 week after surgery (EX-1W). The intervention was performed for 8 weeks after surgery, and the modified neurological severity score(mNSS), the relative fractional anisotropy (rFA) and the expression of vascular endothelial growth factor(VEGF) around the infarcted area of brain tissue were observed at 1 week and 8 weeks after the intervention. Results: After 8 weeks of intervention, compared with the SED group, (1) the mNSS (2.67±0.817) in the EX-1D group was significantly lower than the SED group(P=0.002) and the EX-1W group[(3.83±1.169), P=0.049], respectively; (2) The rFA values in the brain of EX-1D group (0.72±0.071) and EX-1W group (0.62±0.076) were significantly increased (P<0.001), and the EX-1D group was superior to EX-1W group (P=0.005); (3) VEGF expression of brain tissue in EX-1D group (P=0.000) and EX-1W group (P=0.005) was significantly increased, and EX-1D group expression was higher than EX-1W group (P=0.060); (4) VEGF was negatively correlated with mNSS score, and positively correlated with rFA value. Conclusion: 8 weeks after stroke and 1 week after stroke, 8 weeks of exercise intervention, started at 1 d or 1 week after operation, can up-regulate the expression of VEGF in rat brain tissue, promote nerve fiber, exert neuroprotection and improve the effect, and the effect of intervention on the 1st day after operation is more effective.

参考文献/References:

[1] Katan M, Luft A. Global burden of stroke[J]. Semin Neurol, 2018, 38(2): 208
[2] Tatemoto T, Tanaka S, Maeda K, et al. Skillful cycling training induces cortical plasticity in the lower extremity motor cortex area in healthy persons[J]. Front Neurosci, 2019, 13(9): 927
[3] Li F, Shi W, Zhao E Y, et al. Enhanced apoptosis from early physical exercise rehabilitation following ischemic stroke[J]. J Neurosci Res, 2017, 95(4): 1017
[4] Humm J L, Kozlowski D A, James D C, et al. Use-dependent exacerbation of brain damage occurs during an early post-lesion vulnerable period[J]. Brain Res, 1998, 783(2): 286
[5] Kozlowski D A, James D C, Schallert T. Use-dependent exaggeration of neuronal injury after unilateral sensorimotor cortex lesions[J]. J Neurosci, 1996, 16(15): 4776
[6] Lee S U, Kim D Y, Park S H, et al. Mild to moderate early exercise promotes recovery from cerebral ischemia in rats[J]. Can J Neurol Sci, 2009, 36(4): 443
[7] Greenberg D A, Jin K. Vascular endothelial growth factors (vegfs) and stroke[J]. Cell Mol Life Sci, 2013, 70(10): 1753
[8] Oey N E, Samuel G S, Lim J K W, et al. Whole brain white matter microstructure and upper limb function: longitudinal changes in fractional anisotropy and axial diffusivity in post-stroke patients[J]. J Cent Nerv Syst Dis, 2019, 11(7): 1179573519863428
[9] Puig J, Blasco G, Daunis I E J, et al. Decreased corticospinal tract fractional anisotropy predicts long-term motor outcome after stroke[J]. Stroke, 2013, 44(7): 2016
[10] Longa E Z, Weinstein P R, Carlson S, et al. Reversible middle cerebral artery occlusion without craniectomy in rats[J]. Stroke, 1989, 20(1): 84
[11] Chen J, Li Y, Wang L, et al. Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats[J]. Stroke, 2001, 32(4): 1005
[12] Billinger S A, Arena R, Bernhardt J, et al. Physical activity and exercise recommendations for stroke survivors: a statement for healthcare professionals from the American Heart Association/American Stroke Association[J]. Stroke, 2014, 45(8): 2532
[13] Winstein C J, Stein J, Arena R, et al. Guidelines for adult stroke rehabilitation and recovery: a guideline for healthcare professionals from the American Heart Association/American Stroke Association[J]. Stroke, 2016, 47(6): e98
[14] Moura L M, Luccas R, de Paiva J P Q, et al. Diffusion tensor imaging biomarkers to predict motor outcomes in stroke: a narrative review[J]. Front Neurol, 2019, 10: 445
[15] Puig J, Blasco G, Schlaug G, et al. Diffusion tensor imaging as a prognostic biomarker for motor recovery and rehabilitation after stroke[J]. Neuroradiology, 2017, 59(4): 343
[16] Sidaros A, Engberg A W, Sidaros K, et al. Diffusion tensor imaging during recovery from severe traumatic brain injury and relation to clinical outcome: a longitudinal study[J]. Brain, 2008, 131(Pt 2): 559
[17] Hirashima M. Regulation of endothelial cell differentiation and arterial specification by vegf and notch signaling[J]. Anat Sci Int, 2009, 84(3): 95
[18] Shibuya M. Brain angiogenesis in developmental and pathological processes: therapeutic aspects of vascular endothelial growth factor[J]. Febs J, 2009, 276(17): 4636
[19] Schaper W. Collateral circulation: past and present[J]. Basic Res Cardiol, 2009, 104(1): 5
[20] Greenberg D A, Jin K. Vascular endothelial growth factors (VEGFs) and stroke[J]. Cell Mol Life Sci, 2013, 70(10): 1753
[21] Mackenzie F, Ruhrberg C. Diverse roles for VEGF-a in the nervous system[J]. Development, 2012, 139(8): 1371

相似文献/References:

备注/Memo

备注/Memo:
基金项目 国家博士后面上基金(2013M532196);天津市自然科学基金重点项目(18JCZDJC98900);天津市卫生局重点发展项目(16KJ122);“十三五”综合投资“双一流学科”建设项目(11601502-XK0122)
作者简介 姜俐洋(1989-),男,硕士在读,研究方向:康复医学与理疗学;
通信作者:万春晓,E-mail:wcx2226@163.com。
更新日期/Last Update: 2020-07-15