|本期目录/Table of Contents|

[1]李文奎,苏悦,刘啸轩,等.缺血性脑卒中小鼠肾功能损害的相关研究[J].天津医科大学学报,2020,26(04):329-332,345.
 LI Wen-kui,SU Yue,LIU Xiao-xuan,et al.Correlative study on renal damage in mice with ischemic stroke[J].Journal of Tianjin Medical University,2020,26(04):329-332,345.
点击复制

缺血性脑卒中小鼠肾功能损害的相关研究(PDF)
分享到:

《天津医科大学学报》[ISSN:1006-8147/CN:12-1259/R]

卷:
26卷
期数:
2020年04期
页码:
329-332,345
栏目:
基础医学
出版日期:
2020-07-15

文章信息/Info

Title:
Correlative study on renal damage in mice with ischemic stroke
文章编号:
1006-8147(2020)04-0329-04
作者:
李文奎1苏悦1刘啸轩1乌日吉木斯1袁荃1阎涛12
(1.天津医科大学总医院神经病学研究所,天津300052;2.天津医科大学总医院神经内科,天津300052)
Author(s):
LI Wen-kui1SU Yue1LIU Xiao-xuan1WU Ri-jimusi1YUAN Quan1YAN Tao12
(1. Tianjin Neurological Institute, General Hospital, Tianjin Medical University, Tianjin 300052, China; 2. Department of Neurology, General Hospital, Tianjin Medical University, Tianjin 300052, China)
关键词:
缺血性脑卒中急性肾功能损害肾组织病理损害
Keywords:
strokerenal damagerenal pathological damage
分类号:
R743.3
DOI:
-
文献标志码:
A
摘要:
目的:研究小鼠缺血性脑卒中后的肾功能和肾组织改变,探讨缺血性脑卒中和肾功能损害的关系。方法:采用光化学法诱导局灶性大脑皮层缺血性脑卒中模型。在造模第3、28天,对小鼠进行血肌酐(PCr)、血尿素氮(BUN)检测以及肾脏病理评分(RPS)、肾小球基底膜厚度(TGBM)、肾组织纤维化程度(RFR)测评;在造模后第3、7、14、28天,检测尿白蛋白(UA)、尿β2-微球蛋白(β2-M)和尿肌酐(UCr)。结果:小鼠缺血性脑卒中后第3天,BUN、UA、尿β2-M、RPS、TGBM和RFR升高(t=6.885、2.638、3.804、2.181、4.262、7.366,均P<0.05)。缺血性脑卒中后第28天,RPS、RFR继续升高(t =2.791、6.187,均P<0.05)。结论:小鼠缺血性脑卒中可导致急性肾功能损害,同时可以导致急性和慢性肾脏病理损害。
Abstract:
Objective: To study the changes of renal function and renal tissue after ischemic stroke in mice, and to explore the relationship between ischemic stroke and renal dysfunction. Methods: A model of focal cerebral ischemic stroke was induced by photochemical method. On the 3rd and 28th day after modeling, plasma creatinine(PCr), blood urea nitrogen(BUN), renal pathology score(BPS), thickness of glomerular basement membrane(TGBM) and renal fibrosis rate(RFR) were detected in mice. On the 3rd, 7th, 14th, and 28th days after modeling, urine albumin(UA), urine β2-microglobulin(β2-M), and urine creatinine(UCr) were detected. Results: On the third day after ischemic stroke in mice, BUN, UA, urine β2-M, RPS, TGBM, and RFR were increased(t=6.885,2.638,3.804,2.181,4.262,7.366, all P<0.05).On the 28th day after ischemic stroke, RPS and RFR were continued to increase(t =2.791, 6.187, all P<0.05). Conclusion: Ischemic stroke in mice can cause acute renal damage, as well as acute and chronic renal pathological damage.

参考文献/References:

[1] Arya A K, Hu B. Brain-gut axis after stroke[J]. Brain Circ, 2018, 4(4): 165
[2] Chen Z, Venkat P, Seyfried D, et al. Heart interaction: cardiac complications after stroke[J]. Circ Res, 2017, 121(4): 451
[3] Chen J, Cui C, Yang X, et al. MiR-126 affects brain-heart interaction after cerebral ischemic stroke[J]. Transl Stroke Res, 2017, 8(4): 374
[4] Battaglini D, Robba C, Lopes da Silva A, et al. Brain-heart interaction after acute ischemic stroke[J]. Crit Care,2020, 24(1):163
[5] Arnold J, Ng P, Sims D, et al. Incidence and impact on outcomes of acute kidney injury after a stroke: a systematic review and meta-analysis[J]. BMC Nephrol, 2018, 19(1):283
[6] Kumai Y, Kamouchi M, Hata J, et al. Proteinuria and clinical outcomes after ischemic stroke[J]. Neurology, 2012, 78(24): 1909
[7] Wilson C A, Hatchell D L. Photodynamic retinal vascular thrombosis. Rate and duration of vascular occlusion[J]. Invest Ophthalmol Vis Sci, 1991, 32(8): 235
[8] Zhao T T, Zhang H J, Lu X G, et al. Chaihuang-yishen granule inhibits diabetic kidney disease in rats through blocking TGF-β/Smad3 signaling [J]. PLoS One, 2014, 9(3): e90807.
[9] Castiglione R C, Maron-Gutierrez T, Barbosa C M, et al. Bone marrow-derived mononuclear cells promote improvement in glomerular function in rats with early diabetic nephropathy[J]. Cell Physiol Biochem, 2013, 32(3): 699
[10] Chwojnicki K, Król E, Wierucki L, et al. Renal dysfunction in post-stroke patients[J]. PLoS One, 2016, 11(8): e0159775
[11] Hayden D, McCarthy C, Akijian L, et al. Renal dysfunction and chronic kidney disease in ischemic stroke and transient ischemic attack: A population-based study[J]. Int J Stroke, 2017, 12(7): 761
[12] Tomiyama H, Yamashina A. Clinical considerations for the association between vascular damage and chronic kidney disease[J]. Pulse(Basel), 2014, 2(1-4): 81
[13] Jannot A S, Burgun A, Thervet E, et al. The diagnosis-wide landscape of hospital-acquired AKI[J]. Clin J Am Soc Nephrol, 2017, 12(6):874
[14] Portman R J, Kissane J M, Robson A M, et al. Use of beta 2 microglobulin to diagnose tubulo-interstitial renal lesions in children[J]. Kidney Int, 1986, 30(1): 91
[15] Herrero-Morín J D, Málaga S, Fernández N, et al. Cystatin C and beta2-microglobulin: markers of glomerular filtration in critically ill children[J]. Crit Care,2007, 11(3):R59
[16] Du Y, Zappitelli M, Mian A, et al. Urinary biomarkers to detect acute kidney injury in the pediatric emergency center[J]. Pediatr Nephrol, 2011, 26(2): 267
[17] Shin J R, Kim S M, Yoo J S, et al. Urinary excretion of β 2 -microglobulin as a prognostic marker in immunoglobulin A nephropathy[J]. Korean J Intern Med, 2014, 29(3): 334
[18] Vlasakova K, Erdos Z, Troth S P, et al. Evaluation of the relative performance of 12 urinary biomarkers for renal safety across 22 rat sensitivity and specificity studies [J]. Toxicol Sci, 2014, 138(1): 3
[19] Qian Y, Guo X, Che L, et al. Klotho reduces necroptosis by targeting oxidative stress involved in renal ischemic-reperfusion injury[J]. Cell Physiol Biochem, 2018, 45(6): 2268
[20] He J, Gao H X, Yang N, et al. The aldose reductase inhibitor epalrestat exerts nephritic protection on diabetic nephropathy in db/db mice through metabolic modulation[J]. Acta Pharmacol Sin, 2019, 40(1): 86
[21] Siew E D, Matheny M E. Choice of reference serum creatinine in defining acute kidney injury[J]. Nephron, 2015, 131(2): 107
[22] Lyman J L. Blood urea nitrogen and creatinine[J]. Emerg Med Clin North Am, 1986, 4(2): 223
[23] Zhao Q, Yan T, Chopp M, et al. Brain-kidney interaction: renal dysfunction following ischemic stroke [J]. J Cereb Blood Flow Metab, 2020, 40(2): 246
[24] López-Novoa J M, Rodríguez-Pe?觡a A B, Ortiz A, et al. Etiopathology of chronic tubular, glomerular and renovascular nephropathies: Clinical implications[J]. J Transl Med, 2011, 9(1): 13
[25] Ruiz-Ortega M, Egido J. Angiotensin II modulates cell growth-related events and synthesis of matrix proteins in renal interstitial fibroblasts[J]. Kidney Int, 1997, 52(6): 1497
[26] Castro P, Azevedo E, Rocha I, et al. Chronic kidney disease and poor outcomes in ischemic stroke: Is impaired cerebral autoregulation the missing link[J]. BMC Neurol, 2018, 18(1): 21
[27] Zhang W, Zhou X, Zhang H, et al. Extracellular vesicles in diagnosis and therapy of kidney diseases[J]. Am J Physiol Renal Physiol, 2016, 311(5):F844
[28] Kwon S H. Extracellular vesicles in renal physiology and clinical applications for renal disease[J]. Korean J Intern Med, 2019, 34(3): 470

相似文献/References:

[1]韩聪聪,李姮,郭兴梅,等.血清胱抑素 c与非瓣膜性房颤患者CHA2DS2-VASc评分的相关性[J].天津医科大学学报,2017,23(03):227.
 HAN Cong-cong,LIHeng,GUO Xing-mei,et al.Relationship of cystatin c and CHA2DS2-VASc score in non-valvular atrial fibrillation patients[J].Journal of Tianjin Medical University,2017,23(04):227.
[2]乌日吉木斯,刘啸轩,苏悦,等.白细胞介素-18在小鼠缺血性脑卒中的损伤作用及其机制[J].天津医科大学学报,2021,27(06):603.
 WU Ri-jimusi,LIU Xiao-xuan,SU Yue,et al.The injury effect of interleukin-18 in the mice with ischemic stroke and its mechanism[J].Journal of Tianjin Medical University,2021,27(04):603.
[3]张薇,辛灵,阎涛.AG490改善缺血性脑卒中后神经功能的机制研究[J].天津医科大学学报,2022,28(06):615.
 ZHANG Wei,XING Ling,YAN Tao.Mechanism of AG490 improving neurological function after ischemic stroke[J].Journal of Tianjin Medical University,2022,28(04):615.

备注/Memo

备注/Memo:
基金项目 天津市自然科学基金重点项目(17JCZDJC36100)
作者简介 李文奎(1992-),男,硕士在读,研究方向:神经病学;
通信作者:阎涛,E-mail:yantao78@hotmail.com。
更新日期/Last Update: 2020-07-15