[1] Siegel R L, Miller K D, Jemal A. Cancer statistics, 2019[J]. CA Cancer J Clin, 2019, 69(1):7
[2] Chen F, Zhuang X E, Lin L Y, et al. New horizons in tumor microenvironment biology: challenges and opportunities[J]. BMC Med, 2015, 13(1):278
[3] Von Strandmann E P, Reinartz S, Wager U A. Tumor-host cell interactions in ovarian cancer: pathways to therapy failure[J]. Trends Cancer, 2017, 3(2):137
[4] Langyel E. Ovarian cancer development and metastasis[J]. Am J Pathol, 2010, 177(3): 1053
[5] Tomasek J J, Gabbiani G, Hinz B, et al. Myofibroblasts and mechano-regulation of connective tissue remodelling[J]. Nat Rev Mol Cell Biol, 2002, 3(5):349
[6] Raghu K, Michael Z.Fibroblasts in cancer[J]. Nat Rev Cancer, 2006, 6(5):392
[7] Yuan Z, Huijuan T, Jing C, et al. Ovarian cancer-associated fibroblasts contribute to epithelial ovarian carcinoma metastasis by promoting angiogenesis, lymphangiogenesis and tumor cell invasion[J]. Cancer Lett, 2011, 303(1):47
[8] Yao Q, Qu X, Yang Q, et al. CLIC4 mediates TGF-beta1-induced fibroblast-to-myofibroblast transdifferentiation in ovarian cancer[J].Oncol Rep, 2009, 22(3):541
[9] Yeung T L, Leung C S, Wong K K, et al. TGF-beta modulates ovarian cancer invasion by upregulating CAF-derived versican in the tumor microenvironment[J]. Cancer Res, 2013, 73(16):5016
[10] Thuwajit C, Ferraresi A, Titone R A, et al.The metabolic cross-talk between epithelial cancer cells and stromal fibroblasts in ovarian cancer progression: Autophagy plays a role[J]. Med Res Rev, 2018, 38(4):1235
[11] Straussman R, Morikawa T, Shee K, et al. Tumour micro-environment elicits innate resistance to RAF inhibitors through HGF secretion[J]. Nature, 2012, 487(748):500
[12] Sun Y. Translational horizons in the tumor microenvironment: harnessing breakthroughs and targeting cures[J]. Med Res Rev, 2015, 35(2):408
[13] Wang W M, Kryczek I, Dostal L, et al. Effector T cells abrogate stroma-mediated chemoresistance in ovarian cancer[J]. Cell, 2016, 165(5):1092
[14] Spaeth E L, Dembinski J L, Sasser A K, et al. Mesenchymal stem cell transition to tumor-associated fibroblasts contributes to fibrovascular network expansion and tumor progression[J]. PLoS One, 2009, 4(4):e4992
[15] Zhang Y L, Dong W H, Wang J J, et al. Human omental adipose-derived mesenchymal stem cell-conditioned medium alters the proteomic profile of epithelial ovarian cancer cell lines in vitro[J]. Onco Targets Ther, 2017,10:1655
[16] Ding D C, Liu H W, Chu T Y. Interleukin-6 from ovarian mesenchymal stem cells promotes proliferation, sphere and colony formation and tumorigenesis of an ovarian cancer cell line SKOV3[J]. J Cancer, 2016, 7(13):1815
[17] Pasquier J, Gosset M, Geyl C A, et al. CCL2/CCL5 secreted by the stroma induce IL-6/PYK2 dependent chemoresistance in ovarian cancer[J]. Mol Cancer, 2018,17(1):47
[18] Gao T, Yu Y, Cong Q, et al. Human mesenchymal stem cells in the tumour microenvironment promote ovarian cancer progression: the role of platelet-activating factor[J]. BMC Cancer, 2018, 18(1):999
[19] Mclean K, Gong Y, Choi Y, et al. Human ovarian carcinoma–associated mesenchymal stem cells regulate cancer stem cells and tumorigenesis via altered BMP production[J]. J Clin Invest, 2011, 121(8):3206
[20] Jiang J, Chen W, Zhuang R, et al. The effect of endostatin mediated by human mesenchymal stem cells on ovarian cancer cells in vitro[J].J Cancer Res Clin Oncol, 2010, 136(6):873
[21] Hu W H, Wang J, He X F, et al. Human umbilical blood mononuclear cell-derived mesenchymal stem cells serve as interleukin-21 gene delivery vehicles for epithelial ovarian cancer therapy in nude mice[J]. Biotechnol Appl Biochem, 2011, 58(6):397
[22] Sica A, Larghi P, Mancino A, et al. Macrophage polarization in tumour progression[J]. Semin Cancer Biol, 2008, 18(5):349
[23] Goossens P, Rodriguez-Vita J, Etzerodt A, et al. Membrane cholesterol efflux drives tumor-associated macrophage reprogramming and tumor progression[J]. Cell Metab, 2019,29(6):1376
[24] Yin M Z, Li X, Tan S, et al.Tumor-associated macrophages drive spheroid formation during early transcoelomic metastasis of ovarian cancer[J]. J Clin Invest, 2016, 126(11):4157
[25] Yang Y L, Andersson P, Hosaka K, et al. The PDGF-BB-SOX7 axis-modulated IL-33 in pericytes and stromal cells promotes metastasis through tumour-associated macrophages[J]. Nat Commun, 2016, 7:11385
[26] Ke X, Zhang S P, Wu M, et al. Tumor-associated macrophages promote invasion via toll-like receptors signaling in patients with ovarian cancer[J]. Int Immunopharmacol, 2016,40:184
[27] Zhu Q Y, Wu X L, Wu Y E, et al. Interaction between Treg cells and tumor-associated macrophages in the tumor microenvironment of epithelial ovarian cancer[J]. Oncol Rep, 2016, 36(6):3472
[28] Chen X, Ying X, Wang X J, et al. Exosomes derived from hypoxic epithelial ovarian cancer deliver microRNA-940 to induce macrophage M2 polarization[J]. Oncol Rep, 2017, 38(1):522
[29] Zhou J R, Li X D, Wu X L, et al. Exosomes released from tumor-associated macrophages transfer miRNAs that induce a Treg/Th17 cell imbalance in epithelial ovarian cancer[J]. Cancer Immunol Res, 2018, 6(12):1578
[30] Reinartz S, Finkernagel F, Adhikary T A, et al. A transcriptome-based global map of signaling pathways in the ovarian cancer microenvironment associated with clinical outcome[J]. Genome Biol, 2016, 17(1):108
[31] Mittal D, Gubin M M, Schreiber R D, et al. New insights into cancer immunoediting and its three component phases--elimination, equilibrium and escape[J]. Curr Opin Immunol, 2014, 27(1):16
[32] Melero I, Rouzaut A, Motz G T, et al. T-cell and NK-cell infiltration into solid tumors: a key limiting factor for efficacious cancer immunotherapy[J]. Cancer Discov, 2014, 4(5):522
[33] Motz G T, Santoro S P, Wang L, et al. Tumor endothelium FasL establishes a selective immune barrier promoting tolerance in tumors[J]. Nat Med, 2014, 20(6):607
[34] Higuchi T, Flies D B, Marjon N A, et al. CTLA-4 blockade synergizes therapeutically with PARP inhibition in BRCA1-deficient ovarian cancer[J]. Cancer Immunol Res, 2015, 3(11):1257
[35] Topalian S L, Drake C G, Pardoll D M. Targeting the PD-1/B7-H1(PD-L1) pathway to activate anti-tumor immunity[J]. Curr Opin Immunol, 2012, 24(2):207
[36] Hwang W T, Adams S F, Tahirovic E, et al. Prognostic significance of tumor-infiltrating T cells in ovarian cancer: A meta-analysis[J]. Gynecol Oncol, 2012, 124(2):192
[37] Abiko K, Mandai M, Hamanishi J, et al. PD-L1 on tumor cells is induced in ascites and promotes peritoneal dissemination of ovarian cancer through CTL dysfunction[J]. Clin Cancer Res, 2013, 19(6):1363
[38] Varga A, Piha-Paul S A, Ott P A, et al. Antitumor activity and safety of pembrolizumab in patients (pts) with PD-L1 positive advanced ovarian cancer: Interim results from a phase Ib study[J]. J Clin Oncol, 2015, 33(15, S):194
[39] Wu M, Chen X, Lou J, et al. Changes in regulatory T cells in patients with ovarian cancer undergoing surgery: Preliminary results[J].Int Immunopharmacol, 2017, 47:244
[40] Waldhauer I, Steinle A. NK cells and cancer immunosurveillance[J]. Oncogene, 2008, 27(45):5932
[41] Mukherjee S, Pal M, Mukhopadhyay S, et al. VEGF expression to support targeted therapy in ovarian surface epithelial neoplasms[J]. J Clin Diagn Res, 2017, 11(4):C43
[42] Kuerti S, Oliveira-Ferrer L, Milde-Langosch K, et al. VEGF-C expression attributes the risk for lymphatic metastases to ovarian cancer patients[J]. Oncotarget, 2017, 8(26):43218
[43] Song F F, Chen Q, Rao W, et al. OVA66 promotes tumour angiogenesis and progression through enhancing autocrine VEGF-VEGFR2 signalling[J]. EBioMedicine, 2019, 41:156
[44] Li J L, Sainson R C, Oon C E, et al. DLL4-Notch signaling mediates tumor resistance to anti-VEGF therapy in vivo[J]. Cancer Res, 2011, 71(18):6073
[45] Deng W M, Gu X, Lu Y, et al. Down-modulation of TNFSF15 in ovarian cancer by VEGF and MCP-1 is a pre-requisite for tumor neovascularization[J]. Angiogenesis, 2012, 15(1):71
[46] Han L, Xu J, Xu Q, et al. Extracellular vesicles in the tumor microenvironment: Therapeutic resistance, clinical biomarkers, and targeting strategies[J]. Med Res Rev, 2017, 37(6, SI):1318
[47] Worzfeld T, Von Strandmann E P, Huber M A, et al. The unique molecular and cellular microenvironment of ovarian cancer[J]. Front Oncol, 2017, 7(Suppl 5):24
[48] Yokoi A, Yoshioka Y, Yamamoto Y, et al. Malignant extracellular vesicles carrying MMP1 mRNA facilitate peritoneal dissemination in ovarian cancer[J]. Nat Commun, 2017, 8:14470
[49] Kelleher J, Balu-Iyer S, Loyall J A, et al. Extracellular vesicles present in human ovarian tumor microenvironments induce a phosphatidylserine-dependent arrest in the T-cell signaling cascade[J]. Cancer Immunol Res, 2015, 3(11):1269
[50] Szajnik M, Czystowska M, Szczepanski M J, et al. Tumor-derived microvesicles induce, expand and up-regulate biological activities of human regulatory T cells (Treg)[J]. PLoS One, 2010, 5(7):e11469
[51] Nakamura K, Sawada K, Yoshimura A, et al. Clinical relevance of circulating cell-free microRNAs in ovarian cancer[J]. Mol Cancer,2016, 15(1):48
[52] Kanlikilicer P, Rashed M H, Bayraktar R A, et al. Ubiquitous release of exosomal tumor suppressor miR-6126 from ovarian cancer cells[J]. Cancer Res, 2016, 76(24):7194
[53] Au Yeung C L, Co N N, Tsuruga T, et al. Exosomal transfer of stroma-derived miR21 confers paclitaxel resistance in ovarian cancer cells through targeting APAF1[J]. Nat Commun, 2016, 7:11150
[1]申彦,张新莹,师宜荃,等.Glut-1、HIF-1α及P53在卵巢癌中的表达及意义[J].天津医科大学学报,2013,19(05):383.
[2]周 闻,杨 臻,刘 民,等.抑癌基因ST7L对卵巢癌细胞增殖、细胞周期和裸鼠移植瘤的影响[J].天津医科大学学报,2016,22(05):373.
ZHOU Wen,YANG Zhen,LIU Min,et al.Effects of ST7L on cell proliferation, cell cycle in ovarian cancer and tumour xenografts in nude mice[J].Journal of Tianjin Medical University,2016,22(03):373.
[3]范 丹,宋文静,张艳辉,等.PRRX1的表达对卵巢癌血管生成拟态形成及患者预后的影响[J].天津医科大学学报,2018,24(01):1.
FAN Dan,SONG Wen-jing,ZHANG Yan-hui,et al.Effect of PRRX1 expression on VM formation and prognosis in ovarian cancer[J].Journal of Tianjin Medical University,2018,24(03):1.
[4]郑凯源综述,付蔚华审校.肿瘤微环境与免疫抑制性细胞的研究进展[J].天津医科大学学报,2018,24(02):182.
[5]徐灵灵,牛秀珑,张宏健,等.IL-17A促进卵巢癌顺铂耐药的体外机制探讨[J].天津医科大学学报,2018,24(03):192.
XU Ling-ling,NIU Xiu-long,ZHANG Hong-jian,et al.Study on the underlying mechanisms of IL-17A promoting the cisplatin-based resistance of ovarian cancer[J].Journal of Tianjin Medical University,2018,24(03):192.
[6]李岩,牛秀珑,郁春艳,等.IL-17A可以促进卵巢癌的腹腔转移[J].天津医科大学学报,2020,26(06):518.
LI Yan,NIU Xiu-long,YU Chun-yan,et al.IL-17A promotes intraperitoneal metastasis of ovarian cancer[J].Journal of Tianjin Medical University,2020,26(03):518.
[7]李广宁 综述,曹文枫 审校.女性生殖系统双原发癌的研究进展[J].天津医科大学学报,2021,27(06):655.
[8]沈洋洋,牛秀珑,郁春艳,等.外源性IL-6 通过STAT3 通路促进卵巢癌细胞对顺铂
耐药[J].天津医科大学学报,2022,28(03):266.
SHEN Yang-yang,NIU Xiu-long,YU Chun-yan,et al.Exogenous IL-6 promotes cisplatin resistance of ovarian cancer through STAT3 pathway[J].Journal of Tianjin Medical University,2022,28(03):266.
[9]郑小燕,郁春艳,刘俊汝,等.IL-17A对卵巢癌进展的影响及机制研究[J].天津医科大学学报,2023,29(02):148.
ZHENG Xiao-yan,YU Chun-yan,LIU Jun-ru,et al.Effect and mechanism of IL-17A on the progression of ovarian cancer[J].Journal of Tianjin Medical University,2023,29(03):148.