|本期目录/Table of Contents|

[1]刘 庚 综 述,孙晋津 审 校.FOXO3a转录因子在肿瘤临床诊疗中的应用[J].天津医科大学学报,2020,26(01):100-103.
点击复制

FOXO3a转录因子在肿瘤临床诊疗中的应用(PDF)
分享到:

《天津医科大学学报》[ISSN:1006-8147/CN:12-1259/R]

卷:
26卷
期数:
2020年01期
页码:
100-103
栏目:
综述
出版日期:
2020-04-06

文章信息/Info

Title:
-
文章编号:
1006-8147(2020)01-0096-04
作者:
刘 庚 综 述孙晋津 审 校
(天津医科大学第二医院肝胆胰外科,天津300211)
Author(s):
-
关键词:
FOXO3a肿瘤诊断与治疗生物靶标耐药性
Keywords:
-
分类号:
R730.231
DOI:
-
文献标志码:
A
摘要:
FOXO3a是细胞凋亡、增殖、新陈代谢状态、细胞周期阻滞、DNA损伤和寿命等的关键调控因子,与肿瘤的发生发展密切相关。FOXO3a对肿瘤的抑制作用为临床肿瘤治疗提供了新方向,本文就FOXO3a结构和功能以及在肿瘤治疗方面做一综述。
Abstract:
-

参考文献/References:

[1] Carlsson P, Mahlapuu M. Forkhead transcription factors: key players in development and metabolism[J]. Dev Biol, 2002,250(1):1
[2] Sandri M, Sandri C, Gilbert A, et al. Foxo Transcription Factors Induce the Atrophy-Related Ubiquitin Ligase Atrogin-1 and Cause Skeletal Muscle Atrophy[J]. Cell, 2004,117(3):399
[3] Kops G J, Dansen T B, Polderman P E, et al. Forkhead transcription factor FOXO3a protects quiescent cells from oxidative stress[J]. Nature, 2002,419(6904):316
[4] Imai Y, Kanao T, Venderova K, et al. Phosphorylation of FoxO by LRRK2 affects the maintenance of dopaminergic neurons in Drosophila[J]. Embo J, 2014,27(18):2432
[5] Jing E, Gesta S, Kahn C R. SIRT2 regulates adipocyte differentiation through FoxO1 acetylation/deacetylation[J]. Cell Metab, 2007,6(2):105
[6] Fei M, Zhao Y, Wang Y, et al. Low expression of Foxo3a is associated with poor prognosis in ovarian cancer patients[J]. Cancer Invest, 2009,27(1):52
[7] Bullock M D, Bruce A, Sreekumar R, et al. FOXO3 expression during colorectal cancer progression: biomarker potential reflects a tumour suppressor role[J]. Br J Cancer, 2013,109(2):387
[8] Yu S, Yu Y, Sun Y, et al. Activation of FOXO3a suggests good prognosis of patients with radically resected gastric cancer[J]. Int J Clin Exp Pathol, 2015,8(3):2963
[9] Anderson M J, Viars C S, Czekay S, et al. Cloning and Characterization of Three Human Forkhead Genes That Comprise an FKHR-like Gene Subfamily [J]. Genomics, 1998,47(2):187
[10] Kong W, He L, Coppola M, et al. MicroRNA-155 regulates cell survival, growth, and chemosensitivity by targeting FOXO3a in breast cancer[J]. J Biol Chem, 2010,285(23):17869
[11] Wu H, Huang T, Ying L, et al. MiR-155 is Involved in Renal Ischemia-Reperfusion Injury via Direct Targeting of FoxO3a and Regulating Renal Tubular Cell Pyroptosis[J]. Cell Physiol Biochem, 2016,40(6):1692
[12] Ling N, Gu J, Lei Z, et al. microRNA-155 regulates cell proliferation and invasion by targeting FOXO3a in glioma[J]. Oncol Rep, 2013,30(5):2111
[13] Wong H K A, Veremeyko T, Patel N, et al. De-repression of FOXO3a death axis by microRNA-132 and -212 causes neuronal apoptosis in Alzheimer's disease[J]. Hum Mol Genet, 2013,22(15):3077
[14] Kim H Y, Kwon H Y, Ha Thi H T, et al. MicroRNA-132 and microRNA-223 control positive feedback circuit by regulating FOXO3a in inflammatory bowel disease[J]. J Gastroenterol Hepatol, 2016,31(10):1727
[15] Lin H, Dai T, Xiong H, et al. Unregulated miR-96 induces cell proliferation in human breast cancer by downregulating transcriptional factor FOXO3a[J]. Plos One, 2010,5(12):e15797
[16] Cai J, Fang L, Huang Y, et al. miR-205 targets PTEN and PHLPP2 to augment AKT signaling and drive malignant phenotypes in non-small cell lung cancer[J]. Cancer Res, 2013,73(17):5402
[17] Hudson M B, Rahnert J A, Zheng B, et al. miR-182 attenuates atrophy-related gene expression by targeting FoxO3 in skeletal muscle[J]. Am J Physiol Cell Physiol, 2014,307(4):C314
[18] Qiu X, Dou Y. miR-1307 promotes the proliferation of prostate cancer by targeting FOXO3A[J]. Biomed Pharmacother, 2017,88:430
[19] Fu Q, Du Y, Yang C, et al. An oncogenic role of miR-592 in tumorigenesis of human colorectal cancer by targeting Forkhead Box O3A (FoxO3A)[J]. Expert Opin Ther Targets, 2016,20(7):1
[20] Tseng A H, Wu L H, Shieh S S, et al. SIRT3 interactions with FOXO3 acetylation, phosphorylation and ubiquitinylation mediate endothelial cell responses to hypoxia[J]. Biochem J, 2014,464(1):157
[21] Wang X, Hu S, Liu L. Phosphorylation and acetylation modifications of FOXO3a: Independently or synergistically[J]. Oncol Lett, 2017, 13(5):2867
[22] Plas D R, Thompson C B. Akt activation promotes degradation of tuberin and FOXO3a via the proteasome[J]. J Biol Chem, 2003, 278(14):12361
[23] Hu M C, Lee D F, Xia W, et al. IkappaB kinase promotes tumorigenesis through inhibition of forkhead FOXO3a[J]. Cell, 2004,117(2):225
[24] Stephan C, Sandrine S F, Anne Sophie C, et al. Regulation of the intracellular localization of Foxo3a by stress-activated protein kinase signaling pathways in skeletal muscle cells[J]. Mol Cell Biol, 2010,30(2):470
[25] Andrew S, Madureira P A, Pomeranz K M, et al. Paclitaxel-induced nuclear translocation of FOXO3a in breast cancer cells is mediated by c-Jun NH2-terminal kinase and Akt[J]. Cancer Res, 2006, 66(1):212
[26] Xianwang W, Chen W R, Da X. A pathway from JNK through decreased ERK and Akt activities for FOXO3a nuclear translocation in response to UV irradiation[J]. J Cell Physiol, 2011,227(3):1168
[27] Chatterjee A, Chatterjee U, Ghosh M K. Activation of protein kinase CK2 attenuates FOXO3a functioning in a PML-dependent manner: implications in human prostate cancer[J]. Cell Death Dis, 2013, 4(3):e543
[28] Brenkman A B, Keizer P L J, De, Broek N J F, Van Den, et al. Mdm2 induces mono-ubiquitination of FOXO4[J]. PloS One, 2008,3(7):e2819
[29] Wang F, Nguyen M, Qin F X, et al. SIRT2 deacetylates FOXO3a in response to oxidative stress and caloric restriction[J]. Aging Cell,2007,6(4):505
[30] Giannakou M E, Partridge L. The interaction between FOXO and SIRT1: tipping the balance towards survival[J]. Trends Cell Biol, 2004,14(8):408
[31] Singh A, Ye M, Bucur O, et al. Protein phosphatase 2A reactivates FOXO3a through a dynamic interplay with 14-3-3 and AKT[J]. Mol Biol Cell, 2010,21(6):1140
[32] Richard Seonghun N, Judy K. beta1-Integrin-collagen interaction suppresses FoxO3a by the coordination of Akt and PP2A[J]. J Biol Chem, 2010,285(19):14195
[33] Zhang X, Zhuang T, Liang Z, et al. Breast cancer suppression by aplysin is associated with inhibition of PI3K/AKT/FOXO3a pathway[J]. Oncotarget, 2017,8(38):63923
[34] Yamamura Y, Lee W L, Inoue K, et al. RUNX3 cooperates with FoxO3a to induce apoptosis in gastric cancer cells[J].J Biol Chem, 2006, 281(8):5267
[35] Yang Y C, Tang Y A, Shieh J M, et al. DNMT3B overexpression by deregulation of FOXO3a-mediated transcription repression and MDM2 overexpression in lung cancer[J]. J Thorac Oncol, 2014,9(9):1305
[36] Shiota M, Song Y H, Yokomizo A, et al. Foxo3a suppression of urothelial cancer invasiveness through Twist1, Y-box-binding protein 1, and E-cadherin regulation[J]. Clin Cancer Res, 2010, 16(23):5654
[37] Hui R C, Gomes A R, Constantinidou D, et al. The forkhead transcription factor FOXO3a increases phosphoinositide-3 kinase/Akt activity in drug-resistant leukemic cells through induction of PIK3CA expression[J]. Mol Cell Biol, 2008,28(19):5886
[38] Mcgovern U B, Francis R E, Peck B, et al. Gefitinib (Iressa) represses FOXM1 expression via FOXO3a in breast cancer[J]. Mol Cancer Ther, 2009,8(3):582
[39] Fernández d M S, Villalonga P, Clardy J, et al. FOXO3a mediates the cytotoxic effects of cisplatin in colon cancer cells[J]. Mol Cancer Ther, 2008,7(10):3237
[40] Myatt S S, Lam E W. The emerging roles of forkhead box (Fox) proteins in cancer[J]. Nat Rev Cancer, 2007,7(11):847
[41] Kim H J, Lee S Y, Kim C Y, et al. Subcellular localization of FOXO3a as a potential biomarker of response to combined treatment with inhibitors of PI3K and autophagy in PIK3CA-mutant cancer cells[J]. Oncotarget, 2016,8(4):6608
[42] Chen M F, Fang F M, Lu C H, et al. Significance of Nuclear Accumulation of Foxo3a in Esophageal Squamous Cell Carcinoma[J]. Int J Radiat Oncol Biol Phys, 2008,71(4):1220
[43] Yu S, Yu Y, Sun Y, et al. Activation of FOXO3a suggests good prognosis of patients with radically resected gastric cancer[J]. Int J Clin Exp Pathol, 2015,8(3):2963
[44] Ahn H, Kim H, Abdul R, et al. Overexpression of Forkhead Box O3a and Its Association With Aggressive Phenotypes and Poor Prognosis in Human Hepatocellular Carcinoma[J]. Am J Clin Pathol, 2018, 149(2):117
[45] Qian Z, Ren L, Wu D, et al. Overexpression of FoxO3a is associated with glioblastoma progression and predicts poor patient prognosis[J]. Int J Cancer, 2017,140(12):2792
[46] Santamaría C M, Chillón M C, Garcíasanz R, et al. High FOXO3a expression is associated with a poorer prognosis in AML with normal cytogenetics[J]. Leuk Res, 2009,33(12):1706
[47] Shou Z, Lin L, Liang J, et al. Expression and prognosis of FOXO3a and HIF-1α in nasopharyngeal carcinoma[J]. J Cancer Res Clin Oncol, 2012,138(4):585
[48] Shi J, Zhang L A, Zhang J, et al. Clinical and biological significance of forkhead class box O 3a expression in glioma: mediation of glioma malignancy by transcriptional regulation of p27kip1[J]. J Neurooncol, 2010,98(1):57
[49] Yang W, Dolloff N G, El-Deiry W S. ERK and MDM2 prey on FOXO3a[J]. Nature Cell Biol, 2008,10(2):125
[50] Madden, Stephen F, Clynes, et al. A gene expression profile indicative of early stage HER2 targeted;therapy response[J]. Mol Cancer, 2013,12(1):69
[51] Jun-Ichiro I, Tian T, Yi W, et al. Expression of FoxO3a in clinical cases of malignant lymphoma[J]. Pathol Res Pract , 2013,209(11):716
[52] Rehman A, Kim Y, Kim H, et al. FOXO3a expression is associated with lymph node metastasis and poor disease-free survival in triple-negative breast cancer[J]. J Clin Pathol, 2018,71(9):806

相似文献/References:

[1]孙亚军,傅正,朱志峰,等.基因芯片分析三肽化合物酪丝亮肽对人肝癌基因表达谱的影响[J].天津医科大学学报,2013,19(05):353.
[2]王 勇,陈雅婧 综述,岳 丹审校.YB-1对肿瘤增殖调控的研究进展[J].天津医科大学学报,2014,20(04):332.
[3]叶剑飞 综述. microRNAs与肿瘤研究的新进展[J].天津医科大学学报,2014,20(05):416.
[4]孙秀梅,张 飞 综 述,牛瑞芳 审校. Nanog及其假基因NanogP8在肿瘤中的研究进展[J].天津医科大学学报,2015,21(03):90.
[5]孙秀梅,张 飞 综 述,牛瑞芳 审校. Nanog及其假基因NanogP8在肿瘤中的研究进展[J].天津医科大学学报,2015,21(01):90.
[6]黄 纯 综述,李 凯 审校. 肿瘤免疫治疗与化疗的协同效应研究现状[J].天津医科大学学报,2015,21(04):363.
[7]孔令平,周 旋 综述,张 仑 审校.长链非编码RNA MALAT1在肿瘤中的研究进展[J].天津医科大学学报,2015,21(04):367.
[8]郭小凡 综述,邓靖宇,梁 寒 审校.PCDH10启动子甲基化与恶性肿瘤关系的研究进展[J].天津医科大学学报,2016,22(02):182.
[9]姚庆娟 综 述,孙龙昊,何向辉 审 校.自噬对肿瘤免疫微环境的调控作用及其相关治疗策略[J].天津医科大学学报,2019,25(02):180.
[10]王 玲 综 述,徐燕颖 审 校.自然杀伤细胞表面NKp30受体的研究进展[J].天津医科大学学报,2019,25(05):544.

备注/Memo

备注/Memo:
基金项目 天津市自然科学基金资助项目(16JCYBJC27100)
作者简介 刘庚(1960-),男,副主任医师,学士,研究方向:肝胆胰外科的临床及基础研究;通信作者:孙晋津, E-mail :jsun02@tmu.edu.cn。
更新日期/Last Update: 2020-04-16