[1] Siegel R L, Miller K D, Jemal A. Cancer statistics, 2016[J]. CA Cancer J Clin,2016,66(1):7
[2] 韦春晖. 肺癌早期诊断进展[J].临床肺科杂志,2010,15(8):1136
[3] Cortes C,VapnikV. Support-Vector networks[J]. Mach Learn,1995, 20(3):273
[4] Fasshauer G E, Hickernell F J,Ye Q. Solving support vector machines in reproducing kernel Banach spaces with positive definite functions[J]. Appl Comput Harmon Anal,2015,38(1):115
[5] Gillies R J, Kinahan P E, Hricak H. Radiomics. Images are more than pictures, they are data[J]. Radiology, 2016,278(2):563
[6] Grady L. Random walks for image segmentation[J]. IEEE Trans Pattern Anal Mach Intell,2006,28(11):1768
[7] DehmeshkiJ, AminH, Valdivieso M, et al. Segmentation of pulmonary nodules in thoracic CT scans: a region growing approach[J]. IEEE Trans Med Imaging,2008,27(4):467
[8] 刘慧,张彩明,邓凯,等.改进局部自适应的快速FCM肺结节分割方法[J].计算机辅助设计与图形学学报,2014,26(10):1727
[9] Way T W, Hadjiiski L M, Sahiner B, et al. Computer-aided diagnosis of pulmonary nodules on CT scans: Segmentation and classification using 3D active contours[J]. Med Phys,2006,33(7):2323
[10] Son W, Park S J, P ark C M, et al. Automated volumetric segmentation method for computerized-diagnosis of pure nodular ground-glass opacity in high-resolution CT[C]. Proc. SPIE 7624, Medical Imaging 2010: Computer-Aided Diagnosis, 76241P
[11] Zhou J, Chang S, Metaxas D N, et al. An automatic method for ground glass opacity nodule detection and segmentation from CT studies[J]. ConfProc IEEE Eng Med BiolSoc, 2006, 1:3062
[12] Zhang L, Fang M, Novak C L, et al. Consistent interactive segmentation of pulmonary ground glass nodules identified in CT studies[C]. Proceedings of SPIE,2004, 5370:1709