|本期目录/Table of Contents|

[1]郑凯源综述,付蔚华审校.肿瘤微环境与免疫抑制性细胞的研究进展[J].天津医科大学学报,2018,24(02):182-185.
点击复制

肿瘤微环境与免疫抑制性细胞的研究进展(PDF)
分享到:

《天津医科大学学报》[ISSN:1006-8147/CN:12-1259/R]

卷:
24卷
期数:
2018年02期
页码:
182-185
栏目:
综述
出版日期:
2018-03-20

文章信息/Info

Title:
-
作者:
郑凯源综述付蔚华审校
天津医科大学总医院普通外科研究所,天津300052
Author(s):
-
关键词:
微环境免疫抑制细胞因子调节性T淋巴细胞
Keywords:
-
分类号:
R73
DOI:
-
文献标志码:
A
摘要:
目的:在肿瘤的发生发展过程中,机体可通过固有免疫和获得性免疫识别和清除肿瘤细胞,肿 瘤细胞可以通过多种途径逃避机体的免疫监视,其中,通过促进免疫抑制性细胞趋化到肿瘤微环境中从 而逃避机体的免疫反应,被认为是肿瘤免疫逃逸发生的主要原因。因此,通过了解这些免疫细胞及其抑 制机体免疫反应的机制,利用药物阻断它们发挥抑制作用的通路,可以有效的阻止肿瘤细胞的免疫逃逸 ,防止肿瘤细胞的转移。
Abstract:
-

参考文献/References:

[1] Codony-Servat J, Rosell R. Cancer stem cells and immunoresistance: clinical implications and solutions[J]. Translat Lung Cancer Res, 2015, 4(6): 689
[2] Frey A B. Suppression of T cell responses in the tumormicroenvironment[J]. Vaccine, 2015, 33(51): 7393
[3] Principe D R, Doll J A, Bauer J, et al. TGF-β: duality of function between tumor prevention and carcinogenesis[J]. J Natl Cancer Inst, 2014, 106(2): djt369
[4] Whiteside T L. Regulatory T cell subsets in human cancer: are they regulating for or against tumor progression[J]. Cancer Immunol Immunotherapy, 2014, 63(1): 67
[5] Liu Y, Cao X T. Immunosuppressive cells in tumor immune escape and metastasis[J]. J Mol Med (Berl), 2016, 94(5): 509
[6] Walker L S. Treg and CTLA-4: two intertwining pathways to immune tolerance[J]. J Autoimmun, 2013, 45(100): 49
[7] Salinas N, Olguín J E, Castellanos C, et al. T cell suppression in vitro during Toxoplasma gondii infection is the result of IL-2 competition between Tregs and T cells leading to death of proliferating T cells[J]. Scand J Immunol, 2014, 79(1): 1
[8] Geng Y T, Wang H, Lu C Q, et al. Expression of costimulatory molecules B7-H1, B7-H4 and Foxp3+ Tregs in gastric cancer and its clinical significance[J]. Int J Clin Oncol, 2015, 20(2): 273
[9] Alderton G K. Tumour microenvironment: Driving relapse[J]. Nat Rev Cancer, 2015, 15 (4): 195
[10] Carambia A, Freund B, Schwinge D, et al. TGF-β-dependent induction of CD4 CD25 Foxp3 Tregs by liver sinusoidal endothelial cells[J]. J Hepatol, 2014, 61(3): 594
[11] Munn D H, Mellor A L. IDO in the tumor microenvironment: inflammation, Counter- Regulation, and tolerance[J]. Trends Immunol, 2016, 37(3): 193
[12] Millrud C R, Bergenfelz C, Leandersson K. On the origin of myeloid-derived suppressor cells[J]. Oncotarget, 2017, 8(2): 3649
[13] Luo C T, Liao W, Dadi Saida, et al. Graded Foxo1 activity in Treg cells differentiates tumour immunity from spontaneous autoimmunity[J]. Nature, 2016, 529(7587): 532
[14] De Sanctis F, Solito S, Ugel S, et al. MDSCs in cancer: Conceiving new prognostic and therapeutic targets[J]. Biochim Biophys Acta, 2016, 1865(1): 35
[15] Zhao Y , Wu T T, Shao S, et al. Phenotype, development, and biological function of myeloid-derived suppressor cells[J]. Oncoimmunology, 2016, 5(2): e1004983
[16] Younos I H, Abe F, Talmadge J E. Myeloid-derived suppressor cells: their role in the pathophysiology of hematologic malignancies and potential as therapeutic targets[J]. Leuk Lymphoma, 2015, 56(8): 2251
[17] Pinton L, Solito S, Damuzzo V, et al. Activated T cells sustain myeloid-derived suppressor cell-mediated immune suppression[J]. Oncotarget, 2016, 7(2): 1168
[18] Highfill S L, Rodriguez P C, Zhou Q, et al. Bone marrow myeloid-derived suppressor cells (MDSCs) inhibit graft-versus-host disease (GVHD) via an arginase-1-dependent mechanism that is up-regulated by interleukin-13[J]. Blood, 2010, 116(25): 5738
[19] Fujimura T, Kambayashi Y, Aiba S. Crosstalk between regulatory T cells (Tregs) and myeloid derived suppressor cells (MDSCs) during melanoma growth[J]. Oncoimmunology, 2012, 1(8): 1433
[20] Marini O, Spina C, Mimiola E, et al. Identification of G-MDSCs in the peripheral blood of Hodgkin and non-Hodgkin lymphoma patients[J]. Oncotarget, 2016, 7(19): 27
[21] Liu J L, Wang H, Yu Q H, et al. Aberrant frequency of IL-10-producing B cells and its association with Treg and MDSC cells in Non Small Cell Lung Carcinoma patients[J]. Hum Immunol, 2016, 77(1): 84
[22] Rastad J L, Green W R. Myeloid-derived suppressor cells in murine AIDS inhibit B-cell responses in part via soluble mediators including reactive Oxygen and Nitrogen species, and TGF-β[J]. Virology, 2016, 499(9): 9
[23] Baniyash M. Myeloid-derived suppressor cells as intruders and targets: clinical implications in cancer therapy[J]. Cancer Immunol Immunother, 2016, 65(7): 857
[24] Mahmood S, Upreti D, Sow I, et al. Bidirectional interactions of NK cells and dendritic cells in immunotherapy: current and future perspective[J]. Immunotherapy, 2015, 7(3): 301
[25] Boros P, Ochando J, Zeher M. Myeloid derived suppressor cells and autoimmunity[J]. Hum Immunol, 2016, 77(8): 631
[26] De Sanctis F, Solito S, Ugel S, et al. Myeloid-derived suppressor cells in cancer: conceiving new prognostic and therapeutic targets[J]. Biochim Biophys Acta, 2016,1865(1): 35
[27] Paolino M, Penninger J M. The role of TAM family receptors in immune cell function: implications for cancer therapy[J]. Cancers (Basel), 2016, 8(10): 97
[28] Farooque A, Afrin F, Adhikari J S, et al. Polarization of macrophages towards M1 phenotype by a combination of 2-deoxy-d-glucose and radiation: Implications for tumor therapy[J]. Immunobiology, 2016, 221(2): 269
[29] Cornelissen R, Lievense L A, Robertus J L, et al. Intratumoral macrophage phenotype and CD8+ T lymphocytes as potential tools to predict local tumor outgrowth at the intervention site in malignant pleural mesothelioma[J]. Lung Cancer, 2015, 88(3): 332
[30] Boissonnas A, Licata F, Poupel L, et al. CD8+ tumor-infiltrating T cells are trapped in the tumor-dendritic cell network[J]. Neoplasia, 2013, 15(1): 85
[31] Galdiero M R, Garlanda C, Jaillon S, et al. Tumor associated macrophages and neutrophilsintumor progression[J]. Anal Cell Pathol (Amst), 2013, 228(7): 1404
[32] Kovaleva O V, Samoilova D V, Shitova M S, et al. Tumor associated macrophages in kidney cancer[J]. Anal Cell Pathol (Amst), 2016(2): 9307549
[33] Hao N B, Lu M H, Fan Y H, et al. Macrophages in tumor microenvironments and the progression of tumors[J]. Clin Dev Immunol, 2012(11): 948098
[34] Lievense L A, Bezemer K, Aerts J G, et al. Tumor-associated macrophages in thoracic malignancies[J]. Lung Cancer, 2013, 80(3): 256
[35] Shirabe K, Mano Y, Muto J, et al. Role of tumor-associated macrophages in the progression of hepatocellular carcinoma[J]. Surg Today, 2012, 42(1): 1
[36] Nagorsen D, Voigt S, Berg E, et al. Tumor-infiltrating macrophages and dendritic cells in human colorectal cancer: relation to local regulatory T cells, systemic T-cell response against tumor-associated antigens and survival[J]. J Transl Med, 2007, 5(1): 62
[37] Mocanu V, Oboroceanu T, Zugun-Eloae F, et al. Cur-rent status in vitamin d and regulatory T cells-immuno-logical implications[J]. Rev Med Chir Soc Med Nat Iasi, 2013, 117(4): 965
[38] Paul W E, Grossman Z. Pathogen-sensing and regulatory T cells: integrated regulators of immune responses[J]. Cancer Immunol Res , 2014, 2(6): 503
[39] Liu C, Li Y, Dong Y, et al. Methylation status of the SOCS3 gene promoter in H2228 cells and EML4-ALK-positive lung cancer tissues][J]. Zhongguo Fei Ai Za Zhi , 2016,19 (9):565
[40] Norian L A, Rodriguez P C, O’mara L A, et al. Tumor-infiltrating regulatory dendritic cells inhibit CD8+ T cell function via L-arginine metabolism[J]. Cancer Res, 2009, 69(7): 3086
[41] Pico D Y. Choudhury A, Kiessling R. Checkpoint blockade for cancer therapy:revitalizing a suppressed immune system[J]. Trends Mol Med, 2015, 21(8): 482
[42] Fedorov V D, Themeli M, Sadelain M. PD-1- and CTLA-4-based inhibitory chimeric antigen receptors (iCARs) divert off-target immunotherapy responses[J]. Sci Transl Med, 2013, 5(215): 215ra172
[43] Allard B, Pommey S, Smyth M J, et al. Targeting CD73 enhances the antitumor activity of anti-PD-1 and anti-CTLA-4 mAbs[J]. Clin Cancer Res, 2013, 19(20): 5626
[44] Ansell S M, Lesokhin A M, Borrello I, et al. PD-1 blockade with nivolumab in relapsed or refractory Hodgkin’s lymphoma[J]. N Engl J Med, 2015, 372(4): 311
[45] Hodi F S, O’day S J, Mcdermott D F, et al. Improved survival with ipilimumab in patients with metastatic melanoma[J]. N Engl J Med, 2010, 363(8): 711
[46] Camacho L H. CTLA-4 blockade with ipilimumab: biology, safety, efficacy, and future considerations[J]. Cancer Med, 2015, 4(5): 661
[47] Morgensztern D, Herbst R S. Nivolumab and pembrolizumab for Non-Small cell lung cancer[J]. Clin Cancer Res , 2016, 22(15): 3713
[48] Qin H , Lerman B, Sakamaki I, et al. Generation of a new therapeutic peptide that depletes myeloid-derived suppressor cells in tumor-bearing mice[J]. Nat Med, 2014, 20(6): 676
[49] Woo J C, Bae W J, Kim S J, et al. Transplantation of muscle-derived stem cells into the corpus cavernosum restores erectile function in a rat model of cavernous nerve injury [J]. Korean J Urol, 2011, 52(5): 359
[50] Ni X , Jorgensen J L, Goswami M, et al. Reduction of regulatory T cells by Mogamulizumab, a defucosylated anti-CC chemokine receptor 4 antibody, in patients with aggressive/refractory mycosis fungoides and Sézary syndrome[J]. Clin Cancer Res, 2015, 21 (2): 274

相似文献/References:

[1]王雅蕾,王靖怡 综述,齐丽莎 审校.微环境在卵巢癌发生发展中的作用[J].天津医科大学学报,2020,26(03):288.

备注/Memo

备注/Memo:
文章编号 1006-8147(2018)02-0182-04
作者简介 郑凯源(1991-),男,硕士在读,研究方向:普通外科;通信作者:付蔚华,E-mail:1162030455@qq.com。
更新日期/Last Update: 2018-03-20