[1] Codony-Servat J, Rosell R. Cancer stem cells and immunoresistance: clinical
implications and solutions[J]. Translat Lung Cancer Res, 2015, 4(6): 689
[2] Frey A B. Suppression of T cell responses in the tumormicroenvironment[J]. Vaccine,
2015, 33(51): 7393
[3] Principe D R, Doll J A, Bauer J, et al. TGF-β: duality of function between tumor
prevention and carcinogenesis[J]. J Natl Cancer Inst, 2014, 106(2): djt369
[4] Whiteside T L. Regulatory T cell subsets in human cancer: are they regulating for or
against tumor progression[J]. Cancer Immunol Immunotherapy, 2014, 63(1): 67
[5] Liu Y, Cao X T. Immunosuppressive cells in tumor immune escape and metastasis[J]. J
Mol Med (Berl), 2016, 94(5): 509
[6] Walker L S. Treg and CTLA-4: two intertwining pathways to immune tolerance[J]. J
Autoimmun, 2013, 45(100): 49
[7] Salinas N, Olguín J E, Castellanos C, et al. T cell suppression in vitro during
Toxoplasma gondii infection is the result of IL-2 competition between Tregs and T cells
leading to death of proliferating T cells[J]. Scand J Immunol, 2014, 79(1): 1
[8] Geng Y T, Wang H, Lu C Q, et al. Expression of costimulatory molecules B7-H1, B7-H4
and Foxp3+ Tregs in gastric cancer and its clinical significance[J]. Int J Clin Oncol,
2015, 20(2): 273
[9] Alderton G K. Tumour microenvironment: Driving relapse[J]. Nat Rev Cancer, 2015, 15
(4): 195
[10] Carambia A, Freund B, Schwinge D, et al. TGF-β-dependent induction of CD4 CD25 Foxp3
Tregs by liver sinusoidal endothelial cells[J]. J Hepatol, 2014, 61(3): 594
[11] Munn D H, Mellor A L. IDO in the tumor microenvironment: inflammation, Counter-
Regulation, and tolerance[J]. Trends Immunol, 2016, 37(3): 193
[12] Millrud C R, Bergenfelz C, Leandersson K. On the origin of myeloid-derived suppressor
cells[J]. Oncotarget, 2017, 8(2): 3649
[13] Luo C T, Liao W, Dadi Saida, et al. Graded Foxo1 activity in Treg cells
differentiates tumour immunity from spontaneous autoimmunity[J]. Nature, 2016, 529(7587):
532
[14] De Sanctis F, Solito S, Ugel S, et al. MDSCs in cancer: Conceiving new prognostic and
therapeutic targets[J]. Biochim Biophys Acta, 2016, 1865(1): 35
[15] Zhao Y , Wu T T, Shao S, et al. Phenotype, development, and biological function of
myeloid-derived suppressor cells[J]. Oncoimmunology, 2016, 5(2): e1004983
[16] Younos I H, Abe F, Talmadge J E. Myeloid-derived suppressor cells: their role in the
pathophysiology of hematologic malignancies and potential as therapeutic targets[J]. Leuk
Lymphoma, 2015, 56(8): 2251
[17] Pinton L, Solito S, Damuzzo V, et al. Activated T cells sustain myeloid-derived
suppressor cell-mediated immune suppression[J]. Oncotarget, 2016, 7(2): 1168
[18] Highfill S L, Rodriguez P C, Zhou Q, et al. Bone marrow myeloid-derived suppressor
cells (MDSCs) inhibit graft-versus-host disease (GVHD) via an arginase-1-dependent
mechanism that is up-regulated by interleukin-13[J]. Blood, 2010, 116(25): 5738
[19] Fujimura T, Kambayashi Y, Aiba S. Crosstalk between regulatory T cells (Tregs) and
myeloid derived suppressor cells (MDSCs) during melanoma growth[J]. Oncoimmunology, 2012,
1(8): 1433
[20] Marini O, Spina C, Mimiola E, et al. Identification of G-MDSCs in the peripheral
blood of Hodgkin and non-Hodgkin lymphoma patients[J]. Oncotarget, 2016, 7(19): 27
[21] Liu J L, Wang H, Yu Q H, et al. Aberrant frequency of IL-10-producing B cells and its
association with Treg and MDSC cells in Non Small Cell Lung Carcinoma patients[J]. Hum
Immunol, 2016, 77(1): 84
[22] Rastad J L, Green W R. Myeloid-derived suppressor cells in murine AIDS inhibit B-cell
responses in part via soluble mediators including reactive Oxygen and Nitrogen species, and
TGF-β[J]. Virology, 2016, 499(9): 9
[23] Baniyash M. Myeloid-derived suppressor cells as intruders and targets: clinical
implications in cancer therapy[J]. Cancer Immunol Immunother, 2016, 65(7): 857
[24] Mahmood S, Upreti D, Sow I, et al. Bidirectional interactions of NK cells and
dendritic cells in immunotherapy: current and future perspective[J]. Immunotherapy, 2015,
7(3): 301
[25] Boros P, Ochando J, Zeher M. Myeloid derived suppressor cells and autoimmunity[J].
Hum Immunol, 2016, 77(8): 631
[26] De Sanctis F, Solito S, Ugel S, et al. Myeloid-derived suppressor cells in cancer:
conceiving new prognostic and therapeutic targets[J]. Biochim Biophys Acta, 2016,1865(1):
35
[27] Paolino M, Penninger J M. The role of TAM family receptors in immune cell function:
implications for cancer therapy[J]. Cancers (Basel), 2016, 8(10): 97
[28] Farooque A, Afrin F, Adhikari J S, et al. Polarization of macrophages towards M1
phenotype by a combination of 2-deoxy-d-glucose and radiation: Implications for tumor
therapy[J]. Immunobiology, 2016, 221(2): 269
[29] Cornelissen R, Lievense L A, Robertus J L, et al. Intratumoral macrophage phenotype
and CD8+ T lymphocytes as potential tools to predict local tumor outgrowth at the
intervention site in malignant pleural mesothelioma[J]. Lung Cancer, 2015, 88(3): 332
[30] Boissonnas A, Licata F, Poupel L, et al. CD8+ tumor-infiltrating T cells are trapped
in the tumor-dendritic cell network[J]. Neoplasia, 2013, 15(1): 85
[31] Galdiero M R, Garlanda C, Jaillon S, et al. Tumor associated macrophages and
neutrophilsintumor progression[J]. Anal Cell Pathol (Amst), 2013, 228(7): 1404
[32] Kovaleva O V, Samoilova D V, Shitova M S, et al. Tumor associated macrophages in
kidney cancer[J]. Anal Cell Pathol (Amst), 2016(2): 9307549
[33] Hao N B, Lu M H, Fan Y H, et al. Macrophages in tumor microenvironments and the
progression of tumors[J]. Clin Dev Immunol, 2012(11): 948098
[34] Lievense L A, Bezemer K, Aerts J G, et al. Tumor-associated macrophages in thoracic
malignancies[J]. Lung Cancer, 2013, 80(3): 256
[35] Shirabe K, Mano Y, Muto J, et al. Role of tumor-associated macrophages in the
progression of hepatocellular carcinoma[J]. Surg Today, 2012, 42(1): 1
[36] Nagorsen D, Voigt S, Berg E, et al. Tumor-infiltrating macrophages and dendritic
cells in human colorectal cancer: relation to local regulatory T cells, systemic T-cell
response against tumor-associated antigens and survival[J]. J Transl Med, 2007, 5(1): 62
[37] Mocanu V, Oboroceanu T, Zugun-Eloae F, et al. Cur-rent status in vitamin d and
regulatory T cells-immuno-logical implications[J]. Rev Med Chir Soc Med Nat Iasi, 2013,
117(4): 965
[38] Paul W E, Grossman Z. Pathogen-sensing and regulatory T cells: integrated regulators
of immune responses[J]. Cancer Immunol Res , 2014, 2(6): 503
[39] Liu C, Li Y, Dong Y, et al. Methylation status of the SOCS3 gene promoter in H2228
cells and EML4-ALK-positive lung cancer tissues][J]. Zhongguo Fei Ai Za Zhi , 2016,19
(9):565
[40] Norian L A, Rodriguez P C, O’mara L A, et al. Tumor-infiltrating regulatory
dendritic cells inhibit CD8+ T cell function via L-arginine metabolism[J]. Cancer Res,
2009, 69(7): 3086
[41] Pico D Y. Choudhury A, Kiessling R. Checkpoint blockade for cancer
therapy:revitalizing a suppressed immune system[J]. Trends Mol Med, 2015, 21(8): 482
[42] Fedorov V D, Themeli M, Sadelain M. PD-1- and CTLA-4-based inhibitory chimeric
antigen receptors (iCARs) divert off-target immunotherapy responses[J]. Sci Transl Med,
2013, 5(215): 215ra172
[43] Allard B, Pommey S, Smyth M J, et al. Targeting CD73 enhances the antitumor activity
of anti-PD-1 and anti-CTLA-4 mAbs[J]. Clin Cancer Res, 2013, 19(20): 5626
[44] Ansell S M, Lesokhin A M, Borrello I, et al. PD-1 blockade with nivolumab in relapsed
or refractory Hodgkin’s lymphoma[J]. N Engl J Med, 2015, 372(4): 311
[45] Hodi F S, O’day S J, Mcdermott D F, et al. Improved survival with ipilimumab in
patients with metastatic melanoma[J]. N Engl J Med, 2010, 363(8): 711
[46] Camacho L H. CTLA-4 blockade with ipilimumab: biology, safety, efficacy, and future
considerations[J]. Cancer Med, 2015, 4(5): 661
[47] Morgensztern D, Herbst R S. Nivolumab and pembrolizumab for Non-Small cell lung
cancer[J]. Clin Cancer Res , 2016, 22(15): 3713
[48] Qin H , Lerman B, Sakamaki I, et al. Generation of a new therapeutic peptide that
depletes myeloid-derived suppressor cells in tumor-bearing mice[J]. Nat Med, 2014, 20(6):
676
[49] Woo J C, Bae W J, Kim S J, et al. Transplantation of muscle-derived stem cells into
the corpus cavernosum restores erectile function in a rat model of cavernous nerve injury
[J]. Korean J Urol, 2011, 52(5): 359
[50] Ni X , Jorgensen J L, Goswami M, et al. Reduction of regulatory T cells by
Mogamulizumab, a defucosylated anti-CC chemokine receptor 4 antibody, in patients with
aggressive/refractory mycosis fungoides and Sézary syndrome[J]. Clin Cancer Res, 2015, 21
(2): 274
[1]王雅蕾,王靖怡 综述,齐丽莎 审校.微环境在卵巢癌发生发展中的作用[J].天津医科大学学报,2020,26(03):288.