|本期目录/Table of Contents|

[1]宋 虎,王 振,杜晨阳,等.肝缺血再灌注损伤过程中细胞自噬的研究进展[J].天津医科大学学报,2018,24(01):87-90.
点击复制

肝缺血再灌注损伤过程中细胞自噬的研究进展(PDF)
分享到:

《天津医科大学学报》[ISSN:1006-8147/CN:12-1259/R]

卷:
24卷
期数:
2018年01期
页码:
87-90
栏目:
综述
出版日期:
2018-01-20

文章信息/Info

Title:
-
作者:
宋 虎1王 振1杜晨阳1综述张建军2 审校
(1.天津医科大学一中心临床学院移植科 ,天津 300192;2.天津市第一中心医院移植科, 天津300192 )
Author(s):
-
关键词:
自噬肝缺血再灌注损伤双向调控非编码RNA线粒体自噬
Keywords:
-
分类号:
R657.3
DOI:
-
文献标志码:
-
摘要:
自噬是真核细胞在 自噬相关基因(ATG)的调控下利用溶酶体对自身受损的细胞器和大分子物质进行生物学降解的过程。肝缺血再灌注损伤(LIRI)是肝脏手术及失血性休克后肝功能障碍和衰竭主要的致病因素,而且也是早期肝移植失败以及移植排斥反应增加的原因目前临床上移植供肝主要来源于DCD,但由于移植供肝的短缺,使得边缘供肝使用的增加,更加重了肝缺血再灌注损伤。因此,怎样降低肝缺血再灌注损伤,成为改善移植物功能的关键问题。大量文献研究表明,自噬与肝缺血再灌注损伤有着密切关系。本文就近年来自噬在肝缺血再灌注损伤的作用进行综述,以期进一步深入了解和认识自噬在肝缺血再灌注损伤中的重要影响和潜在的治疗价值。
Abstract:
-

参考文献/References:

[1] Cursio R, Colosetti P, Gugenheim J. Autophagy and liver ischemia-reperfusion injury[J]. Bio Med Res Int, 2015,20 (1):1
[2] Czaja M J, Ding W, Donohue T M, et al. Functions of autophagy in normal and diseased liver[J]. Autophagy, 2014,9(8):1131
[3] Suzuki S W, Yamamoto H, Oikawa Y, et al. Atg13 HORMA domain recruits Atg9 vesicles during autophagosome formation[J]. Proc Nati Acad Sci,2015,112(11):3350
[4] Ohsumi Y. Molecular dissection of autophagy: two ubiquitin-like systems[J]. Nat Rev Mol Cell Biol, 2001,2(3):211
[5] Ohsumi Y. Historical landmarks of autophagy research[J]. Cell Res, 2014,24(1):9
[6] Nemchenko A, Chiong M, Turer A, et al. Autophagy as a therapeutic target in cardiovascular disease[J]. J Mol Cell Cardiol, 2011,51(4):584
[7] Kaushal G P, Shah S V. Autophagy in acute kidney injury[J]. Kidney Int, 2016,89(4):779
[8] Zhao Q, Guo Z, Deng W, et al. Calpain 2-mediated autophagy defect increases susceptibility of fatty livers to ischemia–reperfusion injury[J]. Cell Death Dis ,2016,7(4):2186.
[9] Schneider J L, Cuervo A M. Liver autophagy: much more than just taking out the trash[J]. Nat Rev Gastroenterol Hepatol ,2013,11(3):187
[10] Halldorson J B, Bakthavatsalam R, Montenovo M, et al. Differential rates of ischemic cholangiopathy and graft survival associated with induction therapy in DCD liver transplantation[J]. Am J Transplant , 2015,15(1):251
[11] Liu A, Fang H, Wei W, et al. Ischemic preconditioning protects against liver ischemia/reperfusion injury via heme oxygenase-1-mediated autophagy[J]. Crit Care Med , 2014,42(12):762
[12] Liu A, Huang L, Guo E, et al. Baicalein pretreatment reduces liver ischemia/reperfusion injury via induction of autophagy in rats[J]. Sci Rep ,2016,6(2):25042.
[13] Wang Y, Xiong X, Guo H, et al. ZnPP reduces autophagy and induces apoptosis, thus aggravating liver ischemia/reperfusion injury in vitro[J]. Int J Mol Med, 2014,34(6):155
[14] Degli Esposti D, Sebagh M, Pham P, et al. Ischemic preconditioning induces autophagy and limits necrosis in human recipients of fatty liver grafts, decreasing the incidence of rejection episodes[J]. Cell Death Dis , 2011,2(1):111
[15] Esposti D D, Domart M C, Sebagh M, et al. Autophagy is induced by ischemic preconditioning in human livers formerly treated by chemotherapy to limit necrosis[J]. Autophagy, 2010,6(1):172
[16] Wang K, Liu F, Liu C Y, et al. The long noncoding RNA NRF regulates programmed necrosis and myocardial injury during ischemia and reperfusion by targeting miR-873[J]. Cell Death Differ, 2016,23(8):1394
[17] Yu T, Palanisamy K, Sun K, et al. RANTES mediates kidney ischemia reperfusion injury through a possible role of HIF-1α and LncRNA PRINS[J]. Sci Rep , 2016,6:18424.
[18] Wang J, Cao B, Han D, et al. Long non-coding RNA H19 induces cerebral ischemia reperfusion injury via activation of autophagy[J]. Aging Dis, 2017,8(1):71
[19] Chen Z, Luo Y, Yang W, et al. Comparison analysis of dysregulated LncRNA profile in mouse plasma and liver after hepatic ischemia/reperfusion injury[J]. PLoS One, 2015,10(7):133462.
[20] Lim L P, Glasner M E, Yekta S, et al. Vertebrate microRNA genes[J]. Science, 2003,299(5612):1540.
[21] Yang Y, Liang C. MicroRNAs: an emerging player in autophagy[J]. Sci Open Res, 2015,20(1):2199
[22] Li X, Zeng Z, Li Q, et al. Inhibition of microRNA-497 ameliorates anoxia/reoxygenation injury in cardiomyocytes by suppressing cell apoptosis and enhancing autophagy[J]. Oncotarget, 2015,6(22):18829
[23] Li J, Rohailla S, Gelber N, et al. MicroRNA-144 is a circulating effector of remote ischemic preconditioning[J]. Basic Res Cardiol, 2014,109(5):423
[24] Li S, Zhang J, Wang Z, et al. MicroRNA-17 regulates autophagy to promote hepatic ischemia/reperfusion injury via suppression of signal transductions and activation of transcription-3 expression[J]. Liver Transpl, 2016,22(12):1697
[25] Li S P, He J D, Wang Z, et al. miR-30b inhibits autophagy to alleviate hepatic ischemia-reperfusion injury via decreasing the Atg12-Atg5 conjugate[J]. World J Gastroenterol, 2016,22(18):4501
[26] Kim H J, Joe Y, Yu J K, et al. Carbon monoxide protects against hepatic ischemia/reperfusion injury by modulating the miR-34a/SIRT1 pathway[J]. BBA - Mol Basis Dis , 2015,1852(7):1550
[27] Wang G, Yao J, Li Z, et al. miR-34a-5p inhibition alleviates intestinal ischemia/reperfusion-induced reactive oxygen species accumulation and apoptosisvia activation of SIRT1 signaling[J]. Antioxid Redox Signal , 2016,24(17):961
[28] Howard T K, Klintmalm G B, Cofer J B, et al. The influence of preservation injury on rejection in the hepatic transplant recipient[J]. Transplantation,1990,49(1):103
[29] Bhatia-Kissova I, Camougrand N. Mitophagy is not induced by mitochondrial damage but plays a role in the regulation of cellular autophagic activity[J]. Autophagy, 2013,9(11):1897
[30] Palikaras K, Lionaki E, Tavernarakis N. Mitophagy: In sickness and in health[J]. Mol Cell Oncol, 2016,3(1):1056332.
[31] Czaja M J, Ding W, Donohue T M, et al. Functions of autophagy in normal and diseased liver[J]. Autophagy, 2014,9(8):1131
[32] Geisler S, Holmstrom K M, Skujat D, et al. PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1[J]. Nat Cell Biol, 2010,12(2):119
[33] Zhang T, Xue L, Li L, et al. BNIP3 protein suppresses PINK1 kinase proteolytic cleavage to promote mitophagy[J]. J Biol Chem, 2016,291(41):21616
[34] Williams J A, Ding W X. Targeting Pink1-Parkin-mediated mitophagy for treating liver injury[J]. Pharmacol Res, 2015,10(2):264
[35] Novak I, Kirkin V, Mcewan D G, et al. Nix is a selective autophagy receptor for mitochondrial clearance[J]. EMBO Rep,2010,11(1):45
[36] Chinnadurai G, Vijayalingam S, Gibson S B. BNIP3 subfamily BH3-only proteins: mitochondrial stress sensors in normal and pathological functions[J]. Oncogene, 2008,27 (1):114
[37] Zhang J, Ney P A. Role of BNIP3 and NIX in cell death, autophagy, and mitophagy[J]. Cell Death Differ, 2009,16(7):939
[38] Zhu Y, Massen S, Terenzio M, et al. Modulation of serines 17 and 24 in the LC3-interacting region of Bnip3 determines pro-survival mitophagy versus apoptosis[J]. J Biol Chem, 2013,288(2):1099
[39] Thomas R L, Kubli D A, Gustafsson A B. Bnip3-mediated defects in oxidative phosphorylation promote mitophagy[J]. Autophagy, 2011,7(7):775
[40] Go K L, Lee S, Zendejas I, et al. Mitochondrial dysfunction and autophagy in hepatic ischemia/reperfusion injury[J]. Biomed Res Int, 2015,20(15):183469.
[41] Kim J, Nitta T, Mohuczy D, et al. Impaired autophagy: A mechanism of mitochondrial dysfunction in anoxic rat hepatocytes[J]. Hepatology, 2008,47(5):1725
[42] Chun S K, Go K, Yang M, et al. Autophagy in ischemic livers: A critical role of Sirtuin 1/Mitofusin 2 axis in autophagy induction[J]. Toxicol Res , 2016,32(1):35
[43] Khader A, Yang W L, Godwin A, et al. Sirtuin 1 stimulation attenuates ischemic liver injury and enhances mitochondrial recovery and autophagy[J]. Crit Care Med, 2016,44(8):651

相似文献/References:

[1]李 杨,齐建利,赵立平,等.xCT影响肝癌细胞转移的作用机制研究[J].天津医科大学学报,2014,20(02):93.
 LI Yang,QI Jian-li,ZHAO Li-ping,et al.Molecular mechanism of metastasis in hepatocellular carcinoma inhibited by xCT[J].Journal of Tianjin Medical University,2014,20(01):93.
[2]姚庆娟 综 述,孙龙昊,何向辉 审 校.自噬对肿瘤免疫微环境的调控作用及其相关治疗策略[J].天津医科大学学报,2019,25(02):180.
[3]蒋腾,朱仲玲综 述,阎昭审 校.二甲双胍抗肿瘤作用的研究进展[J].天津医科大学学报,2020,26(06):577.
[4]王夏雨,施继禹,贾傲,等.基于网络药理学探讨清胰汤治疗急性胰腺炎的作用机制[J].天津医科大学学报,2021,27(05):454.
 WANG Xia-yu,SHI Ji-yu,JIA Ao,et al.Mechanism of QingyiTang in the treatment of acute pancreatitis based on network pharmacology[J].Journal of Tianjin Medical University,2021,27(01):454.
[5]何磊,杜佳辉,李娜.miR-152通过靶向FGF2抑制肺癌A549细胞系的增殖侵袭[J].天津医科大学学报,2022,28(02):145.
 HE Lei,DU Jia-hui,LI Na.The effect of miR-152 on the proliferation and invasion of lung cancer A549 cell line regulated by FGF2[J].Journal of Tianjin Medical University,2022,28(01):145.
[6]张薇,辛灵,阎涛.AG490改善缺血性脑卒中后神经功能的机制研究[J].天津医科大学学报,2022,28(06):615.
 ZHANG Wei,XING Ling,YAN Tao.Mechanism of AG490 improving neurological function after ischemic stroke[J].Journal of Tianjin Medical University,2022,28(01):615.
[7]孙龙昊,陈俊航,杨甜甜,等.肿瘤浸润免疫细胞中自噬对肿瘤进展的影响[J].天津医科大学学报,2022,28(06):683.
[8]杨澜,周春雷,王艺霖,等.PKG抑制剂KT-5823对宫颈癌HeLa细胞活力、凋亡、自噬的影响[J].天津医科大学学报,2023,29(02):131.
 YANG Lan,ZHOU Chun-lei,WANG Yi-lin,et al.Effects of PKG inhibitor KT-5823 on viability,apoptosis and autophagy of cervical cancer HeLa cells[J].Journal of Tianjin Medical University,2023,29(01):131.
[9]陶文岐,姚朱华.达格列净或沙库巴曲缬沙坦对急性心肌梗死大鼠的作用机制探讨[J].天津医科大学学报,2023,29(04):406.
 TENG Jie,CHEN Ye-gangTAO Wen-qi.Exploring the mechanism of protective effect of dapagliflozin or sacubitril/valsartan in rats with acute myocardial infarction[J].Journal of Tianjin Medical University,2023,29(01):406.
[10]靳可青,刘银玥,王萌,等.虾青素通过自噬改善快速老化小鼠心脏组织损伤[J].天津医科大学学报,2024,30(01):35.[doi:10.20135/j.issn.1006-8147.2024.01.0035]
 JIN Keqing,LIU Yinyue,WANG Meng,et al.Astaxanthin improves cardiac tissue damage in rapidly aging mice through autophagy[J].Journal of Tianjin Medical University,2024,30(01):35.[doi:10.20135/j.issn.1006-8147.2024.01.0035]

备注/Memo

备注/Memo:

基金项目 国家高技术研究发展计划基金资助项目( 863 2012AA021001 );卫生公益性行业科研专项 201302009

作者简介 宋虎(1992-),男,硕士在读,研究方向: 肝脏缺血再灌注损伤以及肝癌的相关研究; 通信作者:张建军, E-mail zhangjianjun99@medmail.com.cn

更新日期/Last Update: 2018-01-23