[1]Mellman I, Coukos G, Dranoff G. Cancer immunotherapy comes of age[J]. Nature, 2011, 480(7378): 480 [2]Liao Tian, Kaufmann A M, Qian Xu, et al. Susceptibility to cytotoxic T cell lysis of Cancer stem cells derived from cervical and head and neck tumor cell lines[J]. J Cancer Res Clin Oncol, 2013, 139(1): 159 [3]Behl D, Porrata L F, Markovic S N, et al. Absolute lymphocyte count recovery after induction chemotherapy predicts superior survival in acute myelogenous leukemia[J]. Leukemia, 2005, 23(16, 1, S): 573S [4]Schmidt T L, Negrin R S, Contag C H. A killer choice for Cancer immunotherapy[J]. Immunol Res, 2014, 58(2/3): 300 [5]Lake R A, Robinson B W. Immunotherapy and chemotherapy--a practical partnership[J]. Nat Rev Cancer, 2005, 5(5): 397 [6]Ramakrishnan R I, Gabrilovich D I. Mechanism of synergistic effect of chemotherapy and immunotherapy of Cancer[J]. Cancer Immunol Immunother, 2011, 60(3): 419 [7]Liseth K, Ersvaer E, Hervig T, et al. Combination of intensive chemotherapy and anticancer vaccines in the treatment of human malignancies: the hematological experience[J]. J Biomed Biotechnol, 2010,2010: 692097 [8]Spisek R, Charalambous A, Mazumder A, et al. Bortezomib enhances dendritic cell(DC)-mediated induction of immunity to human myeloma via exposure of cell surface heat shock protein 90 on dying tumor cells:therapeutic implications[J]. Blood, 2007, 109(11): 4839 [9]Jensen H, Andresen L, Hansen K A, et al. Cell-surface expression of Hsp70 on hematopoietic Cancer cells after inhibition of HDAC activity[J]. J Leukoc Biol, 2009, 86(4): 923 [10]Shurin G V, Tourkova I L, Kaneno R, et al. Chemotherapeutic agents in noncytotoxic concentrations increase antigen presentation by dendritic cells via an IL-12-Dependent mechanism[J]. J Immunol, 2009, 183(1): 137. [11]Tanaka H, Matsushima H, Nishibu A, et al. Dual therapeutic efficacy of vinblastine as a unique chemotherapeutic agent capable of inducing dendritic cell maturation[J]. Cancer Res, 2009, 69(17): 6987. [12]Green D R, Ferguson T, Zitvogel L A. Immunogenic and tolerogenic cell death[J]. Nat Rev Immunol, 2009, 9(5): 353. [13]Bergmann-Leitner E S. Abrams S I.treatment of human colon carcinoma cell lines with anti-neoplastic agents enhances their lytic sensitivity to antigen-specific CD8+cytotoxic T lymphocytes[J]. Cancer Immunol Immunother, 2001, 50(9): 445. [14]Butt A Q, Mills K . Immunosuppressive networks and checkpoints controlling antitumor immunity and their blockade in the development of Cancer immunotherapeutics and vaccines[J]. Oncogene, 2014, 33(38): 4623. [15]Obeid M, Tesniere A, Ghiringhelli F A, et al. Calreticulin exposure dictates the immunogenicity of Cancer cell death[J]. Nat Med, 2007, 13(1): 54. [16]Ramakrishnan R, Huang Chun, Cho H I, et al. Autophagy induced by conventional chemotherapy mediates tumor cell sensitivity to immunotherapy[J]. Cancer Res, 2012, 72(21): 5483. [17]Ferguson T A, Choi J, Green D R. Armed response: how dying cells influence T-cell functions[J]. Immunol Rev, 2011, 241(SI): 77. [18]Zitvogel L, Kepp O, Kroemer G. Immune parameters affecting the efficacy of chemotherapeutic regimens[J]. Nat Rev Clin Oncol, 2011, 8(3): 151. [19]Michaud M, Martins I, Sukkurwala A Q, et al. Autophagy-Dependent anticancer immune responses induced by chemotherapeutic agents in mice[J]. Science, 2011, 334(662): 1573. [20]Schlom J. Therapeutic Cancer vaccines: current status and moving forward[J]. J Natl Cancer Inst, 2012, 104(8): 599. [21]Ghansah T, Vohra N, Kinney K, et al. Dendritic cell immunotherapy combined with gemcitabine chemotherapy enhances survival in a murine model of pancreatic carcinoma[J]. Cancer Immunol Immunother, 2013, 62(6): 1083. [22]Spigel D R. Socinski M A.rationale for chemotherapy,immunotherapy,and checkpoint blockade in SCLC:beyond traditional treatment approaches[J]. J Thorac Oncol, 2013, 8(5): 587. [23]Ramakrishnan R, Assudani D, Nagaraj S, et al. Chemotherapy enhances tumor cell susceptibility to CTL-mediated killing during Cancer immunotherapy in mice[J]. J Clin Invest, 2010, 120(4): 1111. [24]Weigelin B, Krause M, Friedl P. Cytotoxic T lymphocyte migration and effector function in the tumor microenvironment[J]. Immunol Lett, 2011, 138(1): 19. [25]Heusel J W, Wesselschmidt R L, Shresta S, et al. Cytotoxic lymphocytes require granzyme B for the rapid induction of DNA fragmentation and apoptosis in allogeneic target cells[J]. Cell, 1994, 76(6): 977. [26]Dunn G P, Old L J, Schreiber R D. The three Es of Cancer immunoediting[J]. Annu Rev Immunol, 2004, 22(期缺失): 329. [27]Xu X L, Fu X Y, Plate J, et al. IFN-gamma induces cell growth inhibition by Fas-mediated apoptosis: Requirement of STAT1 protein for up-regulation of Fas and FasL expression[J]. Cancer Res, 1998, 58(13): 2832. [28]Ossina N K, Cannas A, Powers V C, et al. Interferon-gamma modulates a p53-independent apoptotic pathway and apoptosis-related gene expression[J]. Journal of Biological Chemistry, 1997, 272(26): 16351. [29]Kaufmann T, Strasser A, Jost P J. Fas death receptor signalling: roles of Bid and XIAP[J]. Cell Death Differ, 2012, 19(1): 42. [30]Voskoboinik I, Dunstone M A, Baran K A, et al. Perforin: structure, function, and role in human immunopathology[J]. Immunol Rev, 2010, 235(1): 35. [31]Afonina I S, Cullen S P, Martin S J. Cytotoxic and non-cytotoxic roles of the CTL/NK protease granzyme B[J]. Immunol Rev, 2010, 235(1): 105. [32]Heibein J A, Goping I S, Barry M, et al. Granzyme B-mediated cytochrome c release is regulated by the Bcl-2 family members Bid and Bax[J]. J Exp Med, 2000, 192(10): 1391. [33]Sutton V R, Davis J E, Cancilla M, et al. Initiation of apoptosis by granzyme B requires direct cleavage of bid,but not direct granzyme B-mediated caspase activation[J]. J Exp Med, 2000, 192(10): 1403. [34]Thomas D A, Scorrano L, Putcha G V, et al. Granzyme B can cause mitochondrial depolarization and cell death in the absence of BID, BAX, and BAK[J]. Proc Natl Acad Sci U S A, 2001, 98(26): 14985. [35]Mccormack R, de Armas L, Shiratsuchi M A. Killing machines: three pore-forming proteins of the immune system[J]. Immunol Res, 2013, 57(1/3, SI): 268. [36]Pinkoski M J, Hobman M, Heibein J A, et al. Entry and trafficking of granzyme B in target cells during granzyme B-perforin-mediated apoptosis[J]. Blood, 1998, 92(3): 1044. [37]Motyka B, Korbutt G, Pinkoski M J, et al. Mannose 6-phosphate/insulin-like growth factor II receptor is a death receptor for granzyme B during cytotoxic T cell-induced apoptosis[J]. Cell, 2000, 103(3): 491
[1]孙亚军,傅正,朱志峰,等.基因芯片分析三肽化合物酪丝亮肽对人肝癌基因表达谱的影响[J].天津医科大学学报,2013,19(05):353.
[2]王 勇,陈雅婧 综述,岳 丹审校.YB-1对肿瘤增殖调控的研究进展[J].天津医科大学学报,2014,20(04):332.
[3]叶剑飞 综述. microRNAs与肿瘤研究的新进展[J].天津医科大学学报,2014,20(05):416.
[4]孙秀梅,张 飞 综 述,牛瑞芳 审校. Nanog及其假基因NanogP8在肿瘤中的研究进展[J].天津医科大学学报,2015,21(03):90.
[5]孙秀梅,张 飞 综 述,牛瑞芳 审校. Nanog及其假基因NanogP8在肿瘤中的研究进展[J].天津医科大学学报,2015,21(01):90.
[6]孔令平,周 旋 综述,张 仑 审校.长链非编码RNA MALAT1在肿瘤中的研究进展[J].天津医科大学学报,2015,21(04):367.
[7]郭小凡 综述,邓靖宇,梁 寒 审校.PCDH10启动子甲基化与恶性肿瘤关系的研究进展[J].天津医科大学学报,2016,22(02):182.
[8].B7.1/GM-CSF修饰的PC3-DC融合疫苗在体外抗肿瘤免疫效应[J].天津医科大学学报,2017,23(03):194.
HAO Xiao-dong,LI Chang-ying,BO Zhi-qiang,et al. Antitumor effect of PC3-DC fusion vaccines modified by B7.1 / GM- CSF in vitro[J].Journal of Tianjin Medical University,2017,23(04):194.
[9]郝晓东,李常颖,薄志强,等.B7.1/GM-CSF修饰的PC3-DC融合疫苗在体外抗肿瘤免疫效应[J].天津医科大学学报,2017,23(03):194.
HAO Xiao-dong,LI Chang-ying,BO Zhi-qiang,et al.Antitumor effect of PC3-DC fusion vaccines modified by B7.1 / GM- CSF in vitro[J].Journal of Tianjin Medical University,2017,23(04):194.
[10]王 玲 综 述,徐燕颖 审 校.自然杀伤细胞表面NKp30受体的研究进展[J].天津医科大学学报,2019,25(05):544.
[11]姚庆娟 综 述,孙龙昊,何向辉 审 校.自噬对肿瘤免疫微环境的调控作用及其相关治疗策略[J].天津医科大学学报,2019,25(02):180.
作者简介 黄纯(1973-),男,副主任医师,博士,研究方向:临床肿瘤学;通信作者:李凯,E-mail: yellowpure@126.com。