[1] WEI Y, LIANG J, ZHENG X, et al. Lung-targeting drug delivery system of baicalin-loaded nanoliposomes: development, biodistribution in rabbits, and pharmacodynamics in nude mice bearing orthotopic human lung cancer[J]. Int J Nanomed, 2017, 12(8): 251-261.
[2] GENG P, ZHU H, ZHOU W, et al. Baicalin inhibits influenza a virus infection via promotion of M1 macrophage polarization[J]. Front Pharmacol, 2020, 11(7): 01298.
[3] CHEN Y, MINH L V, LIU J, et al. Baicalin loaded in folate-PEG modified liposomes for enhanced stability and tumor targeting[J]. Colloids Surf B, 2016, 140(28): 74-82.
[4] ZHANG P, HOU J, FU J, et al. Baicalin protects rat brain microvascular endothelial cells injured by oxygen-glucose deprivation via anti-inflammation[J]. Brain Res Bull, 2013, 97(4): 8-15.
[5] XU M, CHEN X, GU Y, et al. Baicalin can scavenge peroxynitrite and ameliorate endogenous peroxynitrite-mediated neurotoxicity in cerebral ischemia-reperfusion injury[J]. J Ethnopharmacol, 2013, 150(1): 116-124.
[6] FU Y J, XU B, HUANG S W, et al. Baicalin prevents LPS-induced activation of TLR4/NF-κB p65 pathway and inflammation in mice via inhibiting the expression of CD14[J]. Acta Pharmacol Sin, 2021, 42(1): 88-96.
[7] AN H J, LEE J Y, PARK W. Baicalin modulates inflammatory response of macrophages activated by LPS via Calcium-CHOP pathway[J]. Cells, 2022, 11(19): 3076.
[8] XIANG Y, LONG Y, YANG Q, et al. Pharmacokinetics, pharmacodynamics and toxicity of Baicalin liposome on cerebral ischemia reperfusion injury rats via intranasal administration[J]. Brain Res, 2020, 1726(14): 146503.
[9] XING J, CHEN X, ZHONG D. Absorption and enterohepatic circulation of baicalin in rats[J]. Life Sci, 2005, 78(2): 140-146.
[10] ZHANG S, WANG J, PAN J. Baicalin-loaded PEGylated lipid nanoparticles: characterization, pharmacokinetics, and protective effects on acute myocardial ischemia in rats[J]. Drug Deliv, 2016, 23(9): 3696-3703.
[11] LI N, FENG L, TAN Y, et al. Preparation, characterization, pharmacokinetics and biodistribution of baicalin-loaded liposome on cerebral ischemia-reperfusion after i.v. administration in rats[J]. Molecules, 2018, 23(7): 1747-1750.
[12] SLEPUSHKIN V A, SIM?簟ES S, DAZIN P, et al. Sterically stabilized pH-sensitive liposomes. Intracellular delivery of aqueous contents and prolonged circulation in vivo[J]. J Biol Chem, 1997, 272(4): 2382-2388.
[13] YANAR F, KIMPTON H, CRISTALDI D A, et al. Synthesis and characterization of liposomes encapsulating silver nanoprisms obtained by millifluidic-based production for drug delivery[J]. Mater Res Express, 2023, 10(8): 085008.
[14] JASIM A J, ALBUKHATY S, SULAIMAN G M, et al. Liposome nanocarriers based on γ oryzanol: preparation, characterization, and in vivo assessment of toxicity and antioxidant activity[J]. ACS omega, 2024, 9(3): 3554-3564.
[15] ETTOUMI F E, ZHANG R, XU Y, et al. Synthesis and characterization of fucoidan/chitosan-coated nanoliposomes for enhanced stability and oral bioavailability of hydrophilic catechin and hydrophobic juglone[J]. Food Chem, 2023, 423(16): 136330.
[16] SOLOMON D, GUPTA N, MULLA N S, et al. Role of in vitro release methods in liposomal formulation development: challenges and regulatory perspective[J]. AAPS J, 2017, 19(6): 1669-1681.
[17] SONG Z, YIN J, XIAO P, et al. Improving breviscapine oral bioavailability by preparing nanosuspensions, liposomes and phospholipid complexes[J]. Pharmaceutics, 2021, 13(2): 132.
[18] JIN X, LIU M Y, ZHANG D F, et al. Baicalin mitigates cognitive impairment and protects neurons from microglia-mediated neuroinflammation via suppressing NLRP3 inflammasomes and TLR4/NF-κB signaling pathway[J]. Cns Neurosci Ther, 2019, 25(5): 575-590.
[19] LI Y, LIU T, LI Y, et al. Baicalin ameliorates cognitive impairment and protects microglia from LPS-induced neuroinflammation via the SIRT1/HMGB1 pathway[J]. Oxid Med Cell Longev, 2020, 2020(9): 4751349.
[20] LI C G, YAN L, MAI F Y, et al. Baicalin inhibits NOD-Like receptor family, pyrin containing domain 3 inflammasome activation in murine macrophages by augmenting protein kinase a signaling[J]. Front Immunol, 2017, 8(5): 1409-1411.
[21] SIM?ES S, MOREIRA J N, FONSECA C, et al. On the formulation of pH-sensitive liposomes with long circulation times[J]. Adv Drug Deliver Rev, 2004, 56(7): 947-965.
[22] KRAFT J C, FREELING J P, WANG Z, et al. Emerging research and clinical development trends of liposome and lipid nanoparticle drug delivery systems[J]. J Pharm Sci, 2014, 103(1): 29-52.
[23] LI M, HUANG X, ZHUO Q, et al. Clinical significance of miR-129-5p in patients with neonatal sepsis and its regulatory role in the LPS-induced inflammatory response[J]. Bosnia J Basic Med, 2021, 22(2): 185-190.
[24] KASRAIE S, WERFEL T. Role of macrophages in the pathogenesis of atopic dermatitis[J]. Mediat Inflamm, 2013, 2013(4): 942375.
[25] KELLY C, JEFFERIES C, CRYAN S A. Targeted liposomal drug deliveryto monocytes and macrophages[J]. J Drug Deliv Sci Tec, 2011, 2011(5): 727241.
[26] OZMA M A, KHODADADI E, PAKDEL F, et al. Baicalin, a natural antimicrobial and anti-biofilm agent[J]. JHM, 2021, 27(7): 105-109.
[27] JEONG G H, LEE H, LEE H K, et al. Inhibitory effect of gamma-ray-modified hydroxymethylated baicalins on NO production[J]. Bioorg Med Chem Lett, 2023, 96(3): 129491.
[28] ZHANG Q, GUO S, GE H, et al. The protective role of baicalin regulation of autophagy in cancers[J]. Cytotechnology, 2025, 77(1): 33.