|本期目录/Table of Contents|

[1]王雪清,马一弌,刘颖,等.pH敏感黄芩苷脂质体的制备及其口腔抗炎评价[J].天津医科大学学报,2025,31(05):435-440.[doi:10.20135/j.issn.1006-8147.2025.05.0435]
 WANG Xueqing,MA Yiyi,LIU Ying,et al.Preparation of pH sensitive baicalin liposomes and evaluation of oral anti-inflammatory effects[J].Journal of Tianjin Medical University,2025,31(05):435-440.[doi:10.20135/j.issn.1006-8147.2025.05.0435]
点击复制

pH敏感黄芩苷脂质体的制备及其口腔抗炎评价(PDF)
分享到:

《天津医科大学学报》[ISSN:1006-8147/CN:12-1259/R]

卷:
31卷
期数:
2025年05期
页码:
435-440
栏目:
基础医学
出版日期:
2025-09-20

文章信息/Info

Title:
Preparation of pH sensitive baicalin liposomes and evaluation of oral anti-inflammatory effects
文章编号:
1006-8147(2025)05-0435-06
作者:
王雪清1马一弌2刘颖2吴伯岳2朱彧1
1.天津医科大学三中心临床学院,天津300170;2.天津医科大学医学技术学院生物化学系,天津300203
Author(s):
WANG Xueqing1 MA Yiyi2 LIU Ying2 WU Boyue2 ZHU Yu1
1. The Third Central Clinical College of Tianjin Medical University,Tianjin 300170,China;2. Department of Biochemistry,College of Medical Technology,Tianjin Medical University,Tianjin 300203,China
关键词:
黄芩苷pH敏感脂质体抗炎牙周炎
Keywords:
baicalin pH-sensitive liposomes anti-inflammatory periodontitis
分类号:
R932
DOI:
10.20135/j.issn.1006-8147.2025.05.0435
文献标志码:
A
摘要:
目的:制备pH敏感的黄芩苷脂质体(pH-Bai-Lips),探讨其体外抗炎效果。方法:采用薄膜分散法制备pH-Bai-Lips混悬液后,首先系统性考察脂质体的形貌、粒径、包封率(EE)、载药率(LE)、酸响应性以及体外释放率等关键理化性质。在完成基础理化表征的基础上,采用MTT法检测pH-Bai-Lips对RAW264.7细胞24 h活力的影响,评估其体外生物安全性。基于安全性验证结果,进一步通过脂多糖(LPS)刺激RAW264.7细胞构建炎症模型,运用流式细胞术定量分析pH-Bai-Lips对促炎因子[肿瘤坏死因子-α(TNF-α)、白细胞介素(IL)-6]和抗炎因子(IL-10)表达的调控作用。结果:结果显示,脂质体在电镜下呈类圆形,平均粒径为(220.0±2.6) nm,EE为94.94%,LE为26.37%。MTT实验结果显示,pH-Bai-Lips在1~100 μg/mL浓度梯度处理RAW264.7细胞时,各浓度组与对照组相比细胞活力差异无统计学意义(t=0.25、0.29、0.26,均P>0.05)。抗炎结果显示,在LPS诱导的RAW264.7细胞炎症模型中,与LPS组相比,1 μg/mL pH-Bai-Lips组、10 μg/mL pH-Bai-Lips组和100 μg/mL pH-Bai-Lips组可呈浓度依赖性降低促炎因子IL-6(t=11.78、22.47、21.37,均P<0.001)、TNF-α水平(t=7.76、23.28、23.41,均P<0.001);同时升高抗炎因子IL-10水平(t=7.65、20.35、6.45,均P<0.001)。结论:采用薄膜分散法制备的pH-Bai-Lips具有良好的生物安全性和体外细胞抗炎效果。
Abstract:
Objective: To prepare of pH sensitive baicalin liposomes(pH-Bai-Lips) and investigate their anti-inflammatory effects in vitro. Methods: pH-Bai-Lips suspension was prepared using the thin-film dispersion method. The key physicochemical properties of the liposomes including morphology, particle size, encapsulation efficiency(EE), drug loading capacity(LE), pH respo-nsiveness, and release rate in vitro were systematically characterized. Following basic physicochemical characterization, biological safety in vitro of pH-Bai-Lips was assessed via MTT assay by measuring its impact on RAW264.7 cell viability after 24 h exposure. Based on the safety validation results, an inflammatory model was further established using lipopolysaccharides (LPS)-stimulated RAW264.7 cells. Flow cytometry was employed to quantitatively analyze the regulatory effects of pH-Bai-Lips on the expression of pro-inflammatory cyto-kines (TNF-α, IL-6) and the anti-inflammatory cytokine(IL-10). Results: The study demonstrated that the liposomes exhibited a spherical morphology under electron microscopy, with an average particle size of (220.0 ± 2.6) nm, an EE of 94.94%, and a LE of 26.37%. In the MTT assay, RAW264.7 cells treated with pH-Bai-Lips at concentrations ranging from 1 to 100 μg/mL showed no statistically significant differences in cell viability compared with the control group (t=0.25, 0.29, 0.26, all P>0.05). These results indicated that pH-Bai-Lips did not exhibit significant cytotoxicity within this concentration range. The anti-inflammatory results showed that in the LPS-induced RAW264.7 cell inflammation model, compared with the LPS group, pH-Bai-Lips treatment at concentrations of 1, 10, and 100 μg/mL significantly and dose-dependently reduced pro-inflammatory cytokine IL-6 levels(t=11.78, 22.47, 21.37, all P<0.001) and TNF-α levels (t=7.76, 23.28, 23.41, all P<0.001). Meanwhile, the treatment significantly increased the anti-inflammatory cytokine IL-10 level (t=7.65, 20.35, 6.45, all P<0.001). Conclusion: pH-Bai-Lips prepared by film dispersion method have good biological safety and cellular anti-inflammatory effects in vitro.

参考文献/References:

[1] WEI Y, LIANG J, ZHENG X, et al. Lung-targeting drug delivery system of baicalin-loaded nanoliposomes: development, biodistribution in rabbits, and pharmacodynamics in nude mice bearing orthotopic human lung cancer[J]. Int J Nanomed, 2017, 12(8): 251-261.
[2] GENG P, ZHU H, ZHOU W, et al. Baicalin inhibits influenza a virus infection via promotion of M1 macrophage polarization[J]. Front Pharmacol, 2020, 11(7): 01298.
[3] CHEN Y, MINH L V, LIU J, et al. Baicalin loaded in folate-PEG modified liposomes for enhanced stability and tumor targeting[J]. Colloids Surf B, 2016, 140(28): 74-82.
[4] ZHANG P, HOU J, FU J, et al. Baicalin protects rat brain microvascular endothelial cells injured by oxygen-glucose deprivation via anti-inflammation[J]. Brain Res Bull, 2013, 97(4): 8-15.
[5] XU M, CHEN X, GU Y, et al. Baicalin can scavenge peroxynitrite and ameliorate endogenous peroxynitrite-mediated neurotoxicity in cerebral ischemia-reperfusion injury[J]. J Ethnopharmacol, 2013, 150(1): 116-124.
[6] FU Y J, XU B, HUANG S W, et al. Baicalin prevents LPS-induced activation of TLR4/NF-κB p65 pathway and inflammation in mice via inhibiting the expression of CD14[J]. Acta Pharmacol Sin, 2021, 42(1): 88-96.
[7] AN H J, LEE J Y, PARK W. Baicalin modulates inflammatory response of macrophages activated by LPS via Calcium-CHOP pathway[J]. Cells, 2022, 11(19): 3076.
[8] XIANG Y, LONG Y, YANG Q, et al. Pharmacokinetics, pharmacodynamics and toxicity of Baicalin liposome on cerebral ischemia reperfusion injury rats via intranasal administration[J]. Brain Res, 2020, 1726(14): 146503.
[9] XING J, CHEN X, ZHONG D. Absorption and enterohepatic circulation of baicalin in rats[J]. Life Sci, 2005, 78(2): 140-146.
[10] ZHANG S, WANG J, PAN J. Baicalin-loaded PEGylated lipid nanoparticles: characterization, pharmacokinetics, and protective effects on acute myocardial ischemia in rats[J]. Drug Deliv, 2016, 23(9): 3696-3703.
[11] LI N, FENG L, TAN Y, et al. Preparation, characterization, pharmacokinetics and biodistribution of baicalin-loaded liposome on cerebral ischemia-reperfusion after i.v. administration in rats[J]. Molecules, 2018, 23(7): 1747-1750.
[12] SLEPUSHKIN V A, SIM?簟ES S, DAZIN P, et al. Sterically stabilized pH-sensitive liposomes. Intracellular delivery of aqueous contents and prolonged circulation in vivo[J]. J Biol Chem, 1997, 272(4): 2382-2388.
[13] YANAR F, KIMPTON H, CRISTALDI D A, et al. Synthesis and characterization of liposomes encapsulating silver nanoprisms obtained by millifluidic-based production for drug delivery[J]. Mater Res Express, 2023, 10(8): 085008.
[14] JASIM A J, ALBUKHATY S, SULAIMAN G M, et al. Liposome nanocarriers based on γ oryzanol: preparation, characterization, and in vivo assessment of toxicity and antioxidant activity[J]. ACS omega, 2024, 9(3): 3554-3564.
[15] ETTOUMI F E, ZHANG R, XU Y, et al. Synthesis and characterization of fucoidan/chitosan-coated nanoliposomes for enhanced stability and oral bioavailability of hydrophilic catechin and hydrophobic juglone[J]. Food Chem, 2023, 423(16): 136330.
[16] SOLOMON D, GUPTA N, MULLA N S, et al. Role of in vitro release methods in liposomal formulation development: challenges and regulatory perspective[J]. AAPS J, 2017, 19(6): 1669-1681.
[17] SONG Z, YIN J, XIAO P, et al. Improving breviscapine oral bioavailability by preparing nanosuspensions, liposomes and phospholipid complexes[J]. Pharmaceutics, 2021, 13(2): 132.
[18] JIN X, LIU M Y, ZHANG D F, et al. Baicalin mitigates cognitive impairment and protects neurons from microglia-mediated neuroinflammation via suppressing NLRP3 inflammasomes and TLR4/NF-κB signaling pathway[J]. Cns Neurosci Ther, 2019, 25(5): 575-590.
[19] LI Y, LIU T, LI Y, et al. Baicalin ameliorates cognitive impairment and protects microglia from LPS-induced neuroinflammation via the SIRT1/HMGB1 pathway[J]. Oxid Med Cell Longev, 2020, 2020(9): 4751349.
[20] LI C G, YAN L, MAI F Y, et al. Baicalin inhibits NOD-Like receptor family, pyrin containing domain 3 inflammasome activation in murine macrophages by augmenting protein kinase a signaling[J]. Front Immunol, 2017, 8(5): 1409-1411.
[21] SIM?ES S, MOREIRA J N, FONSECA C, et al. On the formulation of pH-sensitive liposomes with long circulation times[J]. Adv Drug Deliver Rev, 2004, 56(7): 947-965.
[22] KRAFT J C, FREELING J P, WANG Z, et al. Emerging research and clinical development trends of liposome and lipid nanoparticle drug delivery systems[J]. J Pharm Sci, 2014, 103(1): 29-52.
[23] LI M, HUANG X, ZHUO Q, et al. Clinical significance of miR-129-5p in patients with neonatal sepsis and its regulatory role in the LPS-induced inflammatory response[J]. Bosnia J Basic Med, 2021, 22(2): 185-190.
[24] KASRAIE S, WERFEL T. Role of macrophages in the pathogenesis of atopic dermatitis[J]. Mediat Inflamm, 2013, 2013(4): 942375.
[25] KELLY C, JEFFERIES C, CRYAN S A. Targeted liposomal drug deliveryto monocytes and macrophages[J]. J Drug Deliv Sci Tec, 2011, 2011(5): 727241.
[26] OZMA M A, KHODADADI E, PAKDEL F, et al. Baicalin, a natural antimicrobial and anti-biofilm agent[J]. JHM, 2021, 27(7): 105-109.
[27] JEONG G H, LEE H, LEE H K, et al. Inhibitory effect of gamma-ray-modified hydroxymethylated baicalins on NO production[J]. Bioorg Med Chem Lett, 2023, 96(3): 129491.
[28] ZHANG Q, GUO S, GE H, et al. The protective role of baicalin regulation of autophagy in cancers[J]. Cytotechnology, 2025, 77(1): 33.

相似文献/References:

备注/Memo

备注/Memo:
基金项目:天津市中医药重点领域科研项目(2022008)
作者简介:王雪清(1997-),女,硕士在读,研究方向:医学检验技术;通信作者:朱彧,E-mail:zhuyutj@126.com。
更新日期/Last Update: 2025-10-01