|本期目录/Table of Contents|

[1]薛玲,李心乐,方彦雯,等.静磁场对股骨头坏死继发肌肉萎缩的修复效应及血管生成机制研究[J].天津医科大学学报,2025,31(05):404-411.[doi:10.20135/j.issn.1006-8147.2025.05.0404]
 XUE Ling,LI Xinle,FANG Yanwen,et al.Study of the mechanism of the repair effect and angiogenesis of static magnetic field on muscle atrophy secondary to femoral head necrosis[J].Journal of Tianjin Medical University,2025,31(05):404-411.[doi:10.20135/j.issn.1006-8147.2025.05.0404]
点击复制

静磁场对股骨头坏死继发肌肉萎缩的修复效应及血管生成机制研究(PDF)
分享到:

《天津医科大学学报》[ISSN:1006-8147/CN:12-1259/R]

卷:
31卷
期数:
2025年05期
页码:
404-411
栏目:
骨病专题
出版日期:
2025-09-20

文章信息/Info

Title:
Study of the mechanism of the repair effect and angiogenesis of static magnetic field on muscle atrophy secondary to femoral head necrosis
文章编号:
1006-8147(2025)05-0404-08
作者:
薛玲1李心乐1方彦雯2卫敏2廖钟财2杨磊3张平13
1.天津医科大学基础医学院人体解剖学系,天津 300070;2.和也健康科技有限公司,安吉 313399;3.河北工业大学生命科学与健康工程学院,健康科学与工程研究中心,河北省生物医学材料与智能诊疗重点实验室,天津 300401
Author(s):
XUE Ling1 LI Xinle1 FANG Yanwen2 WEI Min2 LIAO Zhongcai2 YANG Lei3 ZHANG Ping13
1.Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China;2.Heye Health Technology Co., Ltd., Anji 313399, China; 3.Center for Health Science and Engineering, Hebei Key Laboratory of Biomaterials and Smart Theranostics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300401, China
关键词:
静磁场股骨头坏死肌肉萎缩血管生成肌肉卫星细胞
Keywords:
static magnetic field osteonecrosis of the femoral head muscle atrophy angiogenesis muscle satellite cells
分类号:
R68
DOI:
10.20135/j.issn.1006-8147.2025.05.0404
文献标志码:
A
摘要:
目的:探讨静磁场在股骨头坏死继发肌肉萎缩中的治疗作用及其调控机制。方法:将45只12周龄雄性Sprague-Dawley(SD)大鼠随机分为假手术组(Sham组)、股骨头坏死组(ON组)和股骨头坏死静磁场(SMF)治疗组(ONS组),每组15只。连续4周对大鼠施用200 mT静磁场治疗。使用肌力测试系统检测肌力的变化。通过组织形态学检测各组肌纤维平均横截面积的变化、肌肉湿重/体重的差异、肌肉微血管灌注和肌肉卫星细胞数量的变化。在细胞学层面评估了静磁场对C2C12成肌细胞增殖的影响。通过蛋白印迹方法检测了肌肉血管内皮生长因子(VEGF)、配对盒转录因子7(Pax7)蛋白表达情况。结果:与ON组相比,ONS组大鼠的肌力显著增强(t=4.528,P<0.001);肌纤维横截面积(t=7.090,P<0.01)和湿重/体重比明显增加(t=7.118,P<0.001)。静磁场显著改善了肌肉微血管灌注(t=4.902, P<0.001),增加VEGF(t=14.280,P<0.001)和CD31(t=8.044,P<0.05)的表达。静磁场能够上调Pax7的表达(t=10.350,P<0.01),促进肌肉卫星细胞的增殖(t=9.886,P<0.001)。此外,静磁场治疗能够刺激体外C2C12成肌细胞的增殖,在培养24 h后有显著性差异(t=24.820,P<0.05)。结论:静磁场通过促进血管生成和肌肉卫星细胞增殖,改善再生微环境达到修复肌肉萎缩的目的。
Abstract:
Objective:To investigate the therapeutic effect of static magnetic field (SMF) and its regulatory mechanism in muscle atrophy secondary to femoral head necrosis. Methods: Forty-five 12-week-old male Sprague-Dawley(SD) rats were randomly divided into the sham-operated group(Sham group), the osteonecrosis group(ON group), and the static magnetic field treated osteonecrosis group (ONS group), with 15 in each group. A 200 mT static magnetic field treatment was applied to the rats for 4 consecutive weeks. Using a muscle strength testing system to detecte the changes in muscle strength. Changes in the mean cross-sectional area of muscle fibers, differences in muscle wet weight/body weight, muscle microvascular perfusion, and muscle satellite cell numbers were detected by histomorphometry in each group. The effect of the static magnetic field on the proliferation of C2C12 myoblasts was assessed at the cytological level. In addition, muscle vascular endothelial growth factor (VEGF), and paired-box transcription factor 7 (Pax7) protein expression were examined by Western blotting. Results: Compared with the ON group, rats in the ONS group showed a significant increase in muscle strength(t=4.528, P<0.001); the mean cross-sectional area of muscle fibers (t=7.090, P<0.01) and wet weight/body weight ratio were also significantly increased (t=7.118, P<0.001). SMF significantly improved muscle microvascular perfusion (t=4.902, P<0.001), increased the expression of VEGF (t=14.280, P<0.001) and CD31 (t=8.044, P<0.05) expression. It was observed that static magnetic field was able to upregulate the expression of Pax7(t=10.350, P<0.01) and promote the proliferation of muscle satellite cells (t=9.886, P<0.001). In addition, static magnetic field treatment was able to stimulate the proliferation of C2C12 myoblasts in vitro, with a significant difference after 24 h of culture (t=24.820, P<0.05). Conclusion: SMF repairs muscle atrophy by promoting angiogenesis and proliferation of muscle satellite cells, improving the regenerative microenvironment.

参考文献/References:

[1] HUANG C, QING L, XIAO Y, et al. Insight into steroid-induced ONFH: the molecular mechanism and function of epigenetic modification in mesenchymal stem cells[J]. Biomolecules, 2023, 14(1): 4.
[2] VICA■ R M, BODOG F D, FUGARU F O, et al. Histopathological and immunohistochemical aspects of bone tissue in aseptic necrosis of the femoral head[J]. Rom J Morphol Embryol, 2020, 61(4): 1249-1258.
[3] LIU X, WANG C, MENG H, et al. Research progress on exosomes in osteonecrosis of the femoral head[J]. Orthop Surg, 2022, 14(9): 1951-1957.
[4] YU H, LIU P, ZUO W, et al. Decreased angiogenic and increased apoptotic activities of bone microvascular endothelial cells in patients with glucocorticoid-induced osteonecrosis of the femoral head[J]. BMC Musculoskelet Disord, 2020, 21(1): 277.
[5] CICEK F, TASTEKIN B, BALDAN I, et al. Effect of 40 Hz magnetic field application in posttraumatic muscular atrophy development on muscle mass and contractions in rats[J]. Bioelectromagnetics, 2022, 43(8): 453-461.
[6] YIN L, LI N, JIA W, et al. Skeletal muscle atrophy: from mechanisms to treatments[J]. Pharmacol Res, 2021, 172: 12.
[7] VL?魤DU■U B M, ■ERB?魤NESCU M S, TR?魤ISTARU M R. Assessment and rehabilitation in sarcopenic patients[J]. Curr Health Sci J, 2024, 50(3): 368-380.
[8] LEW W Z, FENG S W, LEE S Y, et al. The review of bioeffects of static magnetic fields on the oral tissue-derived cells and its application in regenerative medicine[J]. Cells, 2021, 10(10): 2662.
[9] GUO Z, ZHU J, QIN G, et al. Static magnetic fields promote generation of muscle lineage cells from pluripotent stem cells and myoblasts[J]. Stem Cell Rev Rep, 2023, 19(5): 1402-1414.
[10] SUN Y, FANG Y, LI X, et al. A static magnetic field enhances the repair of osteoarthritic cartilage by promoting the migration of stem cells and chondrogenesis[J]. J Orthop Translat, 2023, 39: 43-54.
[11] WU H, LI C, MASOOD M, et al. Static magnetic fields regulate T-type calcium ion channels and mediate mesenchymal stem cells proliferation[J]. Cells, 2022, 11(15): 2460.
[12] JOHNSON A L, KAMAL M, PARISE G. The role of supporting cell populations in satellite cell mediated muscle repair[J]. Cells, 2023, 12(15): 18.
[13] PEPE G J, ALBRECHT E D. Microvascular skeletal-muscle crosstalk in health and disease[J]. Int J Mol Sci, 2023, 24(13): 24.
[14] TU H, LI Y L. Inflammation balance in skeletal muscle damage and repair[J]. Front Immunol, 2023, 14: 14.
[15] BROER T, TSINTOLAS N, PURKEY K, et al. Engineered myovascular tissues for studies of endothelial/satellite cell interactions[J]. Acta Biomater, 2024, 188: 65-78.
[16] 王芮琦, 张云龙, 方彦雯, 等. SMF通过促进骨重建和血管生成治疗股骨头坏死[J]. 天津医科大学学报, 2024, 30(1): 29-34.
[17] CORONA B T, CALL J A, BORKOWSKI M, et al. In vivo measurement of hindlimb dorsiflexor isometric torque from pig[J]. J Vis Exp, 2021, (175): e62905.
[18] WU W, ZHANG Y, ZHANG Y, et al. Daprodustat reduces skeletal muscle ischemia-reperfusion injury in mice[J]. J Orthop Surg (Hong Kong), 2024, 32(2): 10225536241267725.
[19] ZHENG W, LI X, LI J, et al. Mechanical loading mitigates osteoarthritis symptoms by regulating the inflammatory microenvironment in a mouse model[J]. Ann N Y Acad Sci, 2022, 1512(1): 141-153.
[20] ABDURAHMAN A, LI X, LI J, et al. Loading-driven PI3K/Akt signaling and erythropoiesis enhanced angiogenesis and osteogenesis in a postmenopausal osteoporosis mouse model[J]. Bone, 2022, 157: 12.
[21] BYUN S E, SIM C, CHUNG Y, et al. Skeletal muscle regeneration by the exosomes of adipose tissue-derived mesenchymal stem cells[J]. Curr Issues Mol Biol, 2021, 43(3): 1473-1488.
[22] CHEN Z, LI L, WU W, et al. Exercise protects proliferative muscle satellite cells against exhaustion via the Igfbp7-Akt-mTOR axis[J]. Theranostics, 2020, 10(14): 6448-6466.
[23] WANG X, LAW J, LUO M, et al. Magnetic measurement and stimulation of cellular and intracellular structures [J]. ACS Nano, 2020, 14(4): 3805-3821.
[24] 李义伟,王建国. SMF生物效应的研究进展[J].中国医学物理学杂志,2020,37(11):1459-1463.
[25] WANG T, YASIN N, ZUBEDAT S, et al. Exposure to static magnetic field facilitates selective attention and neuroplasticity in rats[J]. Brain Res Bull, 2022, 189: 111-120.
[26] KIMURA T, INAKA K, OGISO N. Demonstrative experiment on the favorable effects of static electric field treatment on vitamin D(3)-induced hypercalcemia[J]. Biology (Basel), 2021, 10(11): 1116.
[27] TIAN X, LV Y, FAN Y, et al. Safety evaluation of mice exposed to 7.0-33.0 T high-static magnetic fields[J]. J Magn Reson Imaging, 2021, 53(6): 1872-1884.
[28] YANG X, YU B, SONG C, et al. The Effect of long-term moderate static magnetic field exposure on adult female mice[J]. Biology (Ba-sel), 2022, 11(11): 1585.
[29] SARIMOV R M, SEROV D A, GUDKOV S V. Hypomagnetic conditions and their biological action(review)[J]. Biology (Basel), 2023, 12(12): 1513.
[30] MURACH K A, FRY C S, DUPONT-VERSTEEGDEN E E, et al. Fusion and beyond: satellite cell contributions to loading-induced skeletal muscle adaptation[J]. FASEB J, 2021, 35(10): e21893.
[31] YOUSUF Y, DATU A, BARNES B, et al. Metformin alleviates muscle wasting post-thermal injury by increasing Pax7-positive muscle progenitor cells[J]. Stem Cell Res Ther, 2020, 11(1): 18.
[32] XIE W, SONG C, GUO R, et al. Static magnetic fields in regenerative medicine[J]. APL Bioeng, 2024, 8(1): 011503.
[33] LEE J U, SHIN W, LIM Y, et al. Non-contact long-range magnetic stimulation of mechanosensitive ion channels in freely moving animals[J]. Nat Mater, 2021, 20(7): 1029-1036.
[34] FENG C, YU B, SONG C, et al. Static magnetic fields reduce oxidative stress to improve wound healing and alleviate diabetic complications[J]. Cells, 2022, 11(3): 443.
[35] LEE U, STUELSATZ P, KARAZ S, et al. A tead1-apelin axis directs paracrine communication from myogenic to endothelial cells in skeletal muscle[J]. iScience, 2022, 25(7): 104589.
[36] NAKAGAWA T, MIYAGAWA S, SHIBUYA T, et al. Administration of slow-release synthetic prostacyclin agonist promoted angiogenesis and skeletal muscle regeneration for limb ischemia[J]. Mol Ther Methods Clin Dev, 2020, 18: 119-130.
[37] KOIKE H, MANABE I, OISHI Y. Mechanisms of cooperative cell-cell interactions in skeletal muscle regeneration[J]. Inflamm Regen, 2022, 42(1): 48.

相似文献/References:

[1]刘奇,李心乐,方彦雯,等.稳态磁场对股骨头坏死大鼠骨髓间充质干细胞的调控作用研究[J].天津医科大学学报,2025,31(05):389.[doi:10.20135/j.issn.1006-8147.2025.05.0389]
 LIU Qi,LI Xinle,FANG Yanwen,et al.Study on the regulatory effect of static magnetic field on bone marrow mesenchymal stem cells in rats with osteonecrosis of the femoral head[J].Journal of Tianjin Medical University,2025,31(05):389.[doi:10.20135/j.issn.1006-8147.2025.05.0389]
[2]康冉,李心乐,方彦雯,等.静磁场抑制TRPV4介导的破骨细胞生物学行为减轻骨关节炎[J].天津医科大学学报,2025,31(05):396.[doi:10.20135/j.issn.1006-8147.2025.05.0396]
 KANG Ran,LI Xinle,FANG Yanwen,et al.Static magnetic field inhibits TRPV4-mediated osteoclast biological behavior to alleviate osteoarthritis[J].Journal of Tianjin Medical University,2025,31(05):396.[doi:10.20135/j.issn.1006-8147.2025.05.0396]
[3]王芮琦,张云龙,方彦雯,等.静磁场通过促进骨重建和血管生成治疗股骨头坏死[J].天津医科大学学报,2024,30(01):29.[doi:10.20135/j.issn.1006-8147.2024.01.0029]
 WANG Ruiqi,ZHANG Yunlong,FANG Yanwen,et al.A static magnetic field protects against osteonecrosis of the femoral head by promoting bone remodeling and angiogenesis[J].Journal of Tianjin Medical University,2024,30(05):29.[doi:10.20135/j.issn.1006-8147.2024.01.0029]

备注/Memo

备注/Memo:
基金项目:国家自然科学基金项目(81772405,81572100);和也健康科技重明鸟计划(2021006,2022016)
作者简介:薛玲(1999-),女,硕士在读,研究方向:静磁场治疗肌肉萎缩的机制研究;通信作者:张平,E-mail:pizhang2008@163.com。
更新日期/Last Update: 2025-10-01