[1] HUANG C, QING L, XIAO Y, et al. Insight into steroid-induced ONFH: the molecular mechanism and function of epigenetic modification in mesenchymal stem cells[J]. Biomolecules, 2023, 14(1): 4.
[2] VICA■ R M, BODOG F D, FUGARU F O, et al. Histopathological and immunohistochemical aspects of bone tissue in aseptic necrosis of the femoral head[J]. Rom J Morphol Embryol, 2020, 61(4): 1249-1258.
[3] LIU X, WANG C, MENG H, et al. Research progress on exosomes in osteonecrosis of the femoral head[J]. Orthop Surg, 2022, 14(9): 1951-1957.
[4] YU H, LIU P, ZUO W, et al. Decreased angiogenic and increased apoptotic activities of bone microvascular endothelial cells in patients with glucocorticoid-induced osteonecrosis of the femoral head[J]. BMC Musculoskelet Disord, 2020, 21(1): 277.
[5] CICEK F, TASTEKIN B, BALDAN I, et al. Effect of 40 Hz magnetic field application in posttraumatic muscular atrophy development on muscle mass and contractions in rats[J]. Bioelectromagnetics, 2022, 43(8): 453-461.
[6] YIN L, LI N, JIA W, et al. Skeletal muscle atrophy: from mechanisms to treatments[J]. Pharmacol Res, 2021, 172: 12.
[7] VL?魤DU■U B M, ■ERB?魤NESCU M S, TR?魤ISTARU M R. Assessment and rehabilitation in sarcopenic patients[J]. Curr Health Sci J, 2024, 50(3): 368-380.
[8] LEW W Z, FENG S W, LEE S Y, et al. The review of bioeffects of static magnetic fields on the oral tissue-derived cells and its application in regenerative medicine[J]. Cells, 2021, 10(10): 2662.
[9] GUO Z, ZHU J, QIN G, et al. Static magnetic fields promote generation of muscle lineage cells from pluripotent stem cells and myoblasts[J]. Stem Cell Rev Rep, 2023, 19(5): 1402-1414.
[10] SUN Y, FANG Y, LI X, et al. A static magnetic field enhances the repair of osteoarthritic cartilage by promoting the migration of stem cells and chondrogenesis[J]. J Orthop Translat, 2023, 39: 43-54.
[11] WU H, LI C, MASOOD M, et al. Static magnetic fields regulate T-type calcium ion channels and mediate mesenchymal stem cells proliferation[J]. Cells, 2022, 11(15): 2460.
[12] JOHNSON A L, KAMAL M, PARISE G. The role of supporting cell populations in satellite cell mediated muscle repair[J]. Cells, 2023, 12(15): 18.
[13] PEPE G J, ALBRECHT E D. Microvascular skeletal-muscle crosstalk in health and disease[J]. Int J Mol Sci, 2023, 24(13): 24.
[14] TU H, LI Y L. Inflammation balance in skeletal muscle damage and repair[J]. Front Immunol, 2023, 14: 14.
[15] BROER T, TSINTOLAS N, PURKEY K, et al. Engineered myovascular tissues for studies of endothelial/satellite cell interactions[J]. Acta Biomater, 2024, 188: 65-78.
[16] 王芮琦, 张云龙, 方彦雯, 等. SMF通过促进骨重建和血管生成治疗股骨头坏死[J]. 天津医科大学学报, 2024, 30(1): 29-34.
[17] CORONA B T, CALL J A, BORKOWSKI M, et al. In vivo measurement of hindlimb dorsiflexor isometric torque from pig[J]. J Vis Exp, 2021, (175): e62905.
[18] WU W, ZHANG Y, ZHANG Y, et al. Daprodustat reduces skeletal muscle ischemia-reperfusion injury in mice[J]. J Orthop Surg (Hong Kong), 2024, 32(2): 10225536241267725.
[19] ZHENG W, LI X, LI J, et al. Mechanical loading mitigates osteoarthritis symptoms by regulating the inflammatory microenvironment in a mouse model[J]. Ann N Y Acad Sci, 2022, 1512(1): 141-153.
[20] ABDURAHMAN A, LI X, LI J, et al. Loading-driven PI3K/Akt signaling and erythropoiesis enhanced angiogenesis and osteogenesis in a postmenopausal osteoporosis mouse model[J]. Bone, 2022, 157: 12.
[21] BYUN S E, SIM C, CHUNG Y, et al. Skeletal muscle regeneration by the exosomes of adipose tissue-derived mesenchymal stem cells[J]. Curr Issues Mol Biol, 2021, 43(3): 1473-1488.
[22] CHEN Z, LI L, WU W, et al. Exercise protects proliferative muscle satellite cells against exhaustion via the Igfbp7-Akt-mTOR axis[J]. Theranostics, 2020, 10(14): 6448-6466.
[23] WANG X, LAW J, LUO M, et al. Magnetic measurement and stimulation of cellular and intracellular structures [J]. ACS Nano, 2020, 14(4): 3805-3821.
[24] 李义伟,王建国. SMF生物效应的研究进展[J].中国医学物理学杂志,2020,37(11):1459-1463.
[25] WANG T, YASIN N, ZUBEDAT S, et al. Exposure to static magnetic field facilitates selective attention and neuroplasticity in rats[J]. Brain Res Bull, 2022, 189: 111-120.
[26] KIMURA T, INAKA K, OGISO N. Demonstrative experiment on the favorable effects of static electric field treatment on vitamin D(3)-induced hypercalcemia[J]. Biology (Basel), 2021, 10(11): 1116.
[27] TIAN X, LV Y, FAN Y, et al. Safety evaluation of mice exposed to 7.0-33.0 T high-static magnetic fields[J]. J Magn Reson Imaging, 2021, 53(6): 1872-1884.
[28] YANG X, YU B, SONG C, et al. The Effect of long-term moderate static magnetic field exposure on adult female mice[J]. Biology (Ba-sel), 2022, 11(11): 1585.
[29] SARIMOV R M, SEROV D A, GUDKOV S V. Hypomagnetic conditions and their biological action(review)[J]. Biology (Basel), 2023, 12(12): 1513.
[30] MURACH K A, FRY C S, DUPONT-VERSTEEGDEN E E, et al. Fusion and beyond: satellite cell contributions to loading-induced skeletal muscle adaptation[J]. FASEB J, 2021, 35(10): e21893.
[31] YOUSUF Y, DATU A, BARNES B, et al. Metformin alleviates muscle wasting post-thermal injury by increasing Pax7-positive muscle progenitor cells[J]. Stem Cell Res Ther, 2020, 11(1): 18.
[32] XIE W, SONG C, GUO R, et al. Static magnetic fields in regenerative medicine[J]. APL Bioeng, 2024, 8(1): 011503.
[33] LEE J U, SHIN W, LIM Y, et al. Non-contact long-range magnetic stimulation of mechanosensitive ion channels in freely moving animals[J]. Nat Mater, 2021, 20(7): 1029-1036.
[34] FENG C, YU B, SONG C, et al. Static magnetic fields reduce oxidative stress to improve wound healing and alleviate diabetic complications[J]. Cells, 2022, 11(3): 443.
[35] LEE U, STUELSATZ P, KARAZ S, et al. A tead1-apelin axis directs paracrine communication from myogenic to endothelial cells in skeletal muscle[J]. iScience, 2022, 25(7): 104589.
[36] NAKAGAWA T, MIYAGAWA S, SHIBUYA T, et al. Administration of slow-release synthetic prostacyclin agonist promoted angiogenesis and skeletal muscle regeneration for limb ischemia[J]. Mol Ther Methods Clin Dev, 2020, 18: 119-130.
[37] KOIKE H, MANABE I, OISHI Y. Mechanisms of cooperative cell-cell interactions in skeletal muscle regeneration[J]. Inflamm Regen, 2022, 42(1): 48.
[1]刘奇,李心乐,方彦雯,等.稳态磁场对股骨头坏死大鼠骨髓间充质干细胞的调控作用研究[J].天津医科大学学报,2025,31(05):389.[doi:10.20135/j.issn.1006-8147.2025.05.0389]
LIU Qi,LI Xinle,FANG Yanwen,et al.Study on the regulatory effect of static magnetic field on bone marrow mesenchymal stem cells in rats with osteonecrosis of the femoral head[J].Journal of Tianjin Medical University,2025,31(05):389.[doi:10.20135/j.issn.1006-8147.2025.05.0389]
[2]康冉,李心乐,方彦雯,等.静磁场抑制TRPV4介导的破骨细胞生物学行为减轻骨关节炎[J].天津医科大学学报,2025,31(05):396.[doi:10.20135/j.issn.1006-8147.2025.05.0396]
KANG Ran,LI Xinle,FANG Yanwen,et al.Static magnetic field inhibits TRPV4-mediated osteoclast biological behavior to alleviate osteoarthritis[J].Journal of Tianjin Medical University,2025,31(05):396.[doi:10.20135/j.issn.1006-8147.2025.05.0396]
[3]王芮琦,张云龙,方彦雯,等.静磁场通过促进骨重建和血管生成治疗股骨头坏死[J].天津医科大学学报,2024,30(01):29.[doi:10.20135/j.issn.1006-8147.2024.01.0029]
WANG Ruiqi,ZHANG Yunlong,FANG Yanwen,et al.A static magnetic field protects against osteonecrosis of the femoral head by promoting bone remodeling and angiogenesis[J].Journal of Tianjin Medical University,2024,30(05):29.[doi:10.20135/j.issn.1006-8147.2024.01.0029]