|本期目录/Table of Contents|

[1]康冉,李心乐,方彦雯,等.静磁场抑制TRPV4介导的破骨细胞生物学行为减轻骨关节炎[J].天津医科大学学报,2025,31(05):396-403.[doi:10.20135/j.issn.1006-8147.2025.05.0396]
 KANG Ran,LI Xinle,FANG Yanwen,et al.Static magnetic field inhibits TRPV4-mediated osteoclast biological behavior to alleviate osteoarthritis[J].Journal of Tianjin Medical University,2025,31(05):396-403.[doi:10.20135/j.issn.1006-8147.2025.05.0396]
点击复制

静磁场抑制TRPV4介导的破骨细胞生物学行为减轻骨关节炎(PDF)
分享到:

《天津医科大学学报》[ISSN:1006-8147/CN:12-1259/R]

卷:
31卷
期数:
2025年05期
页码:
396-403
栏目:
骨病专题
出版日期:
2025-09-20

文章信息/Info

Title:
Static magnetic field inhibits TRPV4-mediated osteoclast biological behavior to alleviate osteoarthritis
文章编号:
1006-8147(2025)05-0396-08
作者:
康冉1李心乐1方彦雯2卫敏2廖钟财2杨磊3张平13
1.天津医科大学基础医学院人体解剖学系,天津 300070;2.和也健康科技有限公司,安吉313399;3.河北工业大学生命科学与健康工程学院,健康科学与工程研究中心,河北省生物医学材料与智能诊疗重点实验室,天津 300401
Author(s):
KANG Ran1 LI Xinle1 FANG Yanwen2 WEI Min2 LIAO Zhongcai2 YANG Lei3 ZHANG Ping13
1.Department of Anatomy, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China; 2.Heye Health Technology Co., Ltd., Anji 313399, China; 3.Center for Health Science and Engineering, Hebei Key Laboratory of Biomaterials and Smart Theranostics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300401, China
关键词:
静磁场骨关节炎瞬时受体电位香草蛋白4破骨细胞
Keywords:
static magnetic field osteoarthritis TRPV4 osteoclasts
分类号:
R684.3
DOI:
10.20135/j.issn.1006-8147.2025.05.0396
文献标志码:
A
摘要:
目的:探讨瞬时受体电位香草蛋白4(TRPV4)在骨关节炎小鼠中的表达变化以及静磁场影响破骨细胞行为和修复软骨下骨吸收驱动的软骨退变的机制。方法:本研究采用SPF级雌性C57BL/6小鼠70只。在实验的第一部分将其按随机字数表法分为对照组(Control组, n=10)和骨关节炎组(n=30),后者根据造模时间分为OA7d组(n=10)、OA14d组(n=10)、OA28d组(n=10)。免疫组化检测TRPV4在不同造模时间软骨下骨中的表达。在实验的第二部分将C57BL/6小鼠按随机字数表法分为假手术组(Sham组,n=10)、骨关节炎组(OA组, n=10)、骨关节炎联合静磁场治疗组(OAS组,n=10)。采用横断内侧副韧带,切除内侧半月板的方法建立骨关节炎小鼠模型,并使用本实验室特制的200 mT的静磁场干预2周。通过组织学染色评估静磁场对软骨退变及软骨下骨病理的影响。免疫组化染色评估体内静磁场对TRPV4表达的影响。体外分离骨髓源性破骨细胞,采用TRPV4拮抗剂GSK219验证静磁场对破骨细胞形成、迁移、黏附的作用。ELISA法检测血清和破骨细胞条件培养基中肿瘤坏死因子α(TNF-α)水平。破骨细胞条件培养基培养ATDC5细胞,观察破骨细胞对软骨细胞退变的影响。结果:实验第一部分免疫组化结果显示骨关节炎小鼠软骨下骨中TRPV4阳性表面呈时间依赖性上调。实验第二部分组织学染色显示静磁场改善软骨下骨微结构,提高骨小梁面积比(t=4.318, P<0.01)及软骨下骨板厚度(t=10.42, P<0.001),并且降低骨关节炎小鼠国际骨关节炎研究协会评分(t=3.614,P<0.05),改善软骨损伤;静磁场通过抑制TRPV4降低破骨细胞形成、迁移和黏附能力(t=26.35、36.56、35.76, 均P<0.001);且TRPV4拮抗剂GSK219可模拟静磁场效应。静磁场降低破骨细胞分泌的TNF-α水平(t=3.935, P<0.01),减少其对软骨细胞退变的作用(t=28.52, P<0.001)。结论:骨关节炎早期软骨下骨中TRPV4表达呈时间依赖性增加。静磁场通过抑制TRPV4介导的破骨细胞生物学行为,改善软骨下骨吸收及继发软骨退变。
Abstract:
Objective: To investigate the expression changes of transient receptor potential vanilloid 4(TRPV4) in osteoarthritis(OA) and the mechanism by which static magnetic fields(SMF) influence the biological behavior of osteoclasts and repair subchondral bone resorption-driven cartilage degeneration. Methods: Seventy SPF grade female C57BL/6 mice were used in this study. In the first part of the experiment, C57BL/6 mice were divided into control group(Control, n=10) and osteoarthritis group(OA, n=30) according to the random number table method. The OA group was further divided into OA7d group(n=10), OA14d group(n=10) and OA28d group(n=10) according to the time of 7, 14 and 28 days of modeling. The expression of TRPV4 in subchondral bone at different time points was detected by immunohistochemistry. In the second part of the experiment, C57BL/6 mice were randomly divided into sham operation group(Sham group, n=10), osteoarthritis group(OA group, n=10), osteoarthritis combined with static magnetic field trea-tment group(OAS group, n=10) according to the random number table method. A mouse model of OA was established by transection of the medial collateral ligament and resection of the medial meniscus. The mice were treated with a 200 mT static magnetic field specially designed in our laboratory for 2 weeks. Histological staining was used to evaluate the effect of static magnetic field on cartilage degeneration and subchondral bone pathology. Immunohistochemical staining was used to evaluate the effect of static magnetic field on TRPV4 expression in vivo. Bone marrow derived osteoclasts were isolated in vitro, and the effects of static magnetic field on osteoclast formation, migration and adhesion were verified using TRPV4 antagonist GSK219. The levels of tumor necrosis factor-α (TNF-α) in serum and osteoclast conditioned medium were detected by ELISA. ATDC5 cells were cultured in osteoclast conditioned medium to observe the effect of osteoclasts on the degeneration of chondrocytes. Results: In the first part of the experiment, immunohistochemistry results showed a time-dependent upregulation of TRPV4 positive surface in subchondral bone of OA mice. In the second part of the experiment, histological staining showed that static magnetic field improved the microstructure of subchondral bone, increased the area ratio of trabecular bone (t=4.318, P<0.01) and subchondral bone plate thickness (t=10.42, P<0.001), reduced Osteoarthritis Research Society International(OARSI) score (t=3.614, P<0.05), and improved cartilage damage in OA mice. Static magnetic field inhibited the formation, migration and adhesion of osteoclasts by inhibiting TRPV4 (t=26.35, 36.56, 35.76, all P<0.001). GSK219, a TRPV4 antagonist, could mimic the static magnetic field effect. Static magnetic field decreased the level of TNF-α secreted by osteoclasts(t=3.935, P<0.01) and reduced its effect on the degeneration of chondrocytes(t=28.52, P<0.001). Conclusion: TRPV4 expression in subchondral bone increases in a time-dependent manner in the early stage of OA. Static magnetic field can improve subchondral bone resorption and secondary cartilage degeneration by inhibiting the biological behavior of TRPV4-mediated osteoclasts.

参考文献/References:

[1] HUNTER D J, BIERMA-ZEINSTRA S. Osteoarthritis[J]. Lancet, 2019, 393(10182):1745-1759.
[2] PANG C, WEN L, QIN H, et al. Sotrastaurin, a PKC inhibitor, attenuates RANKL-induced bone resorption and attenuates osteochondral pathologies associated with the development of OA[J]. Cell Mol Med, 2020, 24(15):8452-8465.
[3] LI H, HONG S, QIAN J, et al. Cross talk between the bone and immune systems: osteoclasts function as antigen-presenting cells and activate CD4+ and CD8+ T cells[J]. Blood, 2010, 116(2):210-217.
[4] WANG S, LIU Y, LOU C, et al. Moderate static magnetic field promotes fracture healing and regulates iron metabolism in mice[J]. Bio-med Eng Online, 2023, 22(1):107.
[5] YANG J, FENG Y, LI Q, et al. Evidence of the static magnetic field effects on bone-related diseases and bone cells[J]. Prog Biophys Mol Biol, 2023, 177:168-180.
[6] KIM E C, PARK J, NOH G, et al. Effects of maoderate intensity static magnetic fields on osteoclaoscillation differentiation in mouse bone marrow cells[J]. Bioelectromagnetics, 2018, 39(5):394-404.
[7] SUN Y, FANG Y, LI X, et al. A static magnetic field enhances the repair of osteoarthritic cartilage by promoting the migration of stem cells and chondrogenesis[J]. Orthop Translat, 2023, 39:43-54.
[8] KIM E C, PARK J, NOH G, et al. Effects of moderate intensity static magnetic fields on osteoclastic differentiation in mouse bone marrow cells[J]. Bioelectromagnetics, 2018, 39(5):394-404.
[9] KHATIB N S, MONSEN J, AHMED S, et al. Mechanoregulatory role of TRPV4 in prenatal skeletal development[J]. Sci Adv, 2023, 9(4):eade2155.
[10] FU Y, CUI S, ZHOU Y, et al. Dental pulp stem cell-derived exosomes alleviate mice knee asteoarthritis by inhibiting TRPV4-mediated osteoclast activation[J]. Int J Mol Sci, 2023, 24(5):4926.
[11] QUICKE J G, CONAGHAN P G, CORP N, et al. Osteoarthritis year in review 2021: epidemiology & therapy[J]. Osteoarthritis Cartilage, 2022, 30(2): 196-206.
[12] KOLASINSKI S L, NEOGI T, HOCHBERG M C, et al. 2019 Ame-rican college of rheumatology/arthritis foundation guideline for the management of osteoarthritis of the hand, hip, and knee[J]. Arthritis Rheumatol, 2020, 72(2):220-233.
[13] JANG S, LEE K, JU J H. Recent updates of diagnosis, pathophysiology, and treatment on osteoarthritis of the knee[J]. Int J Mol Sci, 2021, 22(5):2619.
[14] TEIMOURI M, MOTIFIFARD M, LALEHZAR S S, et al. Persistent pain following total knee arthroplasty: the role of underlying diseases[J]. J Res Med Sci, 2023, 28:57.
[15] LOMBARDO D J, SILJANDER M P, SOBH A, et al. Periprosthetic fractures about total knee arthroplasty[J]. Musculoskelet Surg, 2020, 104(2):135-143.
[16] THEIL C, BOCKHOLT S, GOSHEGER G, et al. Surgical management of periprosthetic joint infections in hip and knee Megaprostheses[J]. Medicina (Kaunas), 2024, 60(4):583.
[17] XU B, XING R, HUANG Z, et al. Excessive mechanical stress induces chondrocyte apoptosis through TRPV4 in an anterior cruciate ligament-transected rat osteoarthritis model[J]. Life Sci, 2019, 228:158-166.
[18] HINATA M, IMAI S, SANAKI T, et al. Sensitization of transient receptor potential vanilloid 4 and increasing its endogenous ligand 5,6-epoxyeicosatrienoic acid in rats with monoiodoacetate-induced osteoarthritis[J]. Pain,2018, 159: 939-947.
[19] DING D, WANG L, YAN J, et al. Zoledronic acid generates a spatiotemporal effect to attenuate osteoarthritis by inhibiting potential Wnt5a-associated abnormal subchondral bone resorption[J]. PLoS One, 2022, 17(7):e0271485.
[20] LI X, YANG J, LIU D, et al. Knee loading inhibits osteoclast lineage in a mouse model of osteoarthritis[J]. Sci Rep, 2016, 6:24668.
[21] ZHANG J, MENG X, DING C, et al. Regulation of osteoclast differentiation by static magnetic fields[J]. Electromagn Biol Med, 2017, 36(1):8-19.
[22] RAMADAN D E, HARIYANI N, INDRAWATI R, et al. Cytokines and chemokines in periodontitis[J]. Eur J Dent, 2020, 14(3):483-495.
[23] DAI J, DONG R, HAN X, et al. Osteoclast-derived exosomal let-7a-5p targets Smad2 to promote the hypertrophic differentiation of chondrocytes[J]. Am J Physiol Cell Physiol, 2020, 319(1):C21-C33.
[24] DAI J, HU Z, ZENG F, et al.Osteoclast-derived exosomal miR-212-3p suppressed the anabolism and accelerated the catabolism of chondrocytes in osteoarthritis by targeting TGF-β1/Smad2 signaling[J]. Arch Biochem Biophys, 2024, 751:109827.
[25] HU W, CHEN Y, DOU C, et al. Microenvironment in subchondral bone: predominant regulator for the treatment of osteoarthritis[J]. Ann Rheum Dis, 2021, 80(4):413-422.
[26] ZHANG R, LI G, ZENG C, et al. Mechanical stress contributes to osteoarthritis development through the activation of transforming growth factor beta 1(TGF-β1)[J]. Bone Joint Res, 2018, 7(11):587-594.

相似文献/References:

[1]朱 珊,王 植,万业达,等.负重与非负重位结合评价膝内翻的临床意义[J].天津医科大学学报,2014,20(04):309.
[2]王颖嫒,周 蕾,吕 星,等. SAPHO综合征15例临床分析[J].天津医科大学学报,2015,21(02):171.
[3]王筱郁,李杰,李心乐,等.机械加载通过促进髌下脂肪垫干细胞迁移及软骨分化治疗骨关节炎[J].天津医科大学学报,2022,28(05):508.
 WANG Xiao-yu,LI Jie,LI Xin-le,et al.Mechanical loading treats osteoarthritis by promoting the migration and chondrogenic differentiation of infrapatellar fat pad stem cells[J].Journal of Tianjin Medical University,2022,28(05):508.
[4]王芮琦,张云龙,方彦雯,等.静磁场通过促进骨重建和血管生成治疗股骨头坏死[J].天津医科大学学报,2024,30(01):29.[doi:10.20135/j.issn.1006-8147.2024.01.0029]
 WANG Ruiqi,ZHANG Yunlong,FANG Yanwen,et al.A static magnetic field protects against osteonecrosis of the femoral head by promoting bone remodeling and angiogenesis[J].Journal of Tianjin Medical University,2024,30(05):29.[doi:10.20135/j.issn.1006-8147.2024.01.0029]
[5]薛玲,李心乐,方彦雯,等.静磁场对股骨头坏死继发肌肉萎缩的修复效应及血管生成机制研究[J].天津医科大学学报,2025,31(05):404.[doi:10.20135/j.issn.1006-8147.2025.05.0404]
 XUE Ling,LI Xinle,FANG Yanwen,et al.Study of the mechanism of the repair effect and angiogenesis of static magnetic field on muscle atrophy secondary to femoral head necrosis[J].Journal of Tianjin Medical University,2025,31(05):404.[doi:10.20135/j.issn.1006-8147.2025.05.0404]

备注/Memo

备注/Memo:
基金项目:国家自然科学基金(81772405,81572100);和也健康科技重明鸟计划(2021006,2022016)
作者简介:康冉(1998-),女,硕士在读,研究方向:静磁场治疗骨关节炎的机制研究;通信作者:张平,E-mail:pizhang2008@163.com。
更新日期/Last Update: 2025-10-01