[1] ZHANG J, CAO J, LIU Y, et al. Advances in the pathogenesis of steroid-associated osteonecrosis of the femoral head[J]. Biomo-lecules, 2024, 14(6): 667.
[2] DENG Z, KIM H K W, HERNANDEZ P A, et al. Fat phagocytosis promotes anti-inflammatory responses of macrophages in a mouse model of osteonecrosis[J]. Cells, 2024, 13(14): 1227.
[3] YANG H, NIE S, ZHOU C, et al. Palliative effect of rotating magnetic field on glucocorticoid-induced osteonecrosis of the femoral head in rats by regulating osteoblast differentiation[J]. Biochem Bio-phys Res Commun, 2024, 725: 150265.
[4] DUAN L, ZUO J, ZHANG F, et al. Magnetic targeting of HU-MSCs in the treatment of glucocorticoid-associated osteonecrosis of the femoral head through Akt/Bcl2/Bad/Caspase-3 pathway[J]. Int J Na-nomedicine, 2020, 15: 3605-3620.
[5] XU H H, LI S M, FANG L, et al. Platelet-rich plasma promotes bone formation, restrains adipogenesis and accelerates vascularization to relieve steroids-induced osteonecrosis of the femoral head[J]. Platelets, 2021, 32(7): 950-959.
[6] WANG A, REN M, WANG J. The pathogenesis of steroid-induced osteonecrosis of the femoral head: a systematic review of the literature[J]. Gene, 2018, 671: 103-109.
[7] XU Y, JIANG Y, XIA C, et al. Stem cell therapy for osteonecrosis of femoral head: opportunities and challenges[J]. Regen Ther, 2020, 15: 295-304.
[8] VATSA P, NEGI R, ANSARI U A, et al. Insights of extracellular vesicles of mesenchymal stem cells: a prospective cell-free regenerative medicine for neurodegenerative disorders[J]. Mol Neurobiol, 2022, 59(1): 459-474.
[9] NAITO Y, YAMADA S, JINNO Y, et al. Bone-forming effect of a static magnetic field in rabbit femurs[J]. Int J Periodontics Restor-ative Dent, 2019, 39(2): 259-264.
[10] LIU L, GUO S, SHI W, et al. Bone marrow mesenchymal stem cell-derived small extracellular vesicles promote periodontal regeneration[J]. Tissue Eng Part A, 2021, 27(13-14): 962-976.
[11] 李佳琪, 石瑞兴, 徐佳瑶. 磁场调控纳米生物催化的研究进展与生物医学应用[J]. 生物化学与生物物理进展, 2024, 51(12): 3123-3135.
[12] YANG J, ZHOU S, LV H, et al. Static magnetic field of 0.2-0.4 T promotes the recovery of hindlimb unloading-induced bone loss in mice[J]. Int J Radiat Biol, 2021, 97(5): 746-754.
[13] YANG J, FENG Y, LI Q, et al. Evidence of the static magnetic field effects on bone-related diseases and bone cells[J]. Prog Biophys Mol Biol, 2023, 177: 168-180.
[14] WANG J, SHANG P. Static magnetic field: a potential tool of controlling stem cells fates for stem cell therapy in osteoporosis[J]. Prog Biophys Mol Biol, 2023, 178: 91-102.
[15] LIU D, LI X, LI J, et al. Knee loading protects against osteonecrosis of the femoral head by enhancing vessel remodeling and bone healing[J]. Bone, 2015, 81: 620-631.
[16] SUN Y, FANG Y, LI X, et al. A static magnetic field enhances the repair of osteoarthritic cartilage by promoting the migration of stem cells and chondrogenesis[J]. J Orthop Translat, 2023, 39: 43-54.
[17] WANG X, LI X, LI J, et al. Mechanical loading stimulates bone angiogenesis through enhancing type H vessel formation and downregulating exosomal miR-214-3p from bone marrow-derived mesenchymal stem cells[J]. FASEB J, 2021, 35(1): e21150.
[18] IMAI Y, KANIE K, KATO R. Morphological heterogeneity descri-ption enabled early and parallel non-invasive prediction of T-cell proliferation inhibitory potency and growth rate for facilitating donor selection of human mesenchymal stem cells[J]. Inflamm Regen, 2022, 42(1): 8.
[19] ZHANG Y, LI X, LI J, et al. Knee loading enhances the migration of adipose-derived stem cells to the osteoarthritic sites through the SDF-1/CXCR4 regulatory axis[J]. Calcif Tissue Int, 2022, 111(2): 171-184.
[20] WU H, LI C, MASOOD M, et al. Static magnetic fields regulate T-type calcium ion channels and mediate mesenchymal stem cells proliferation[J]. Cells, 2022, 11(15): 2460.
[21] 宋国丽, 周翠红, 张宇. 静磁场对骨髓间充质干细胞增殖及骨向分化的影响[J]. 中国康复理论与实践, 2014, 20(4): 322-326.
[22] CHUO W, MA T, SAITO T, et al. A preliminary study of the effect of static magnetic field acting on rat bone marrow mesenchymal stem cells during osteogenic differentiation in vitro[J]. J Hard Tissue Biol, 2013, 22(2): 227-232.
[23] MAR DZIAK M, TOMASZEWSKI K, POLINCEUSZ P, et al. Static magnetic field enhances the viability and proliferation rate of adipose tissue-derived mesenchymal stem cells potentially through activation of the phosphoinositide 3-kinase/Akt(PI3K/Akt) pathway[J]. Electromagn Biol Med, 2016, 36(1): 45-54.
[24] LEW W Z, FENG S W, LIN C T, et al. Use of 0.4‐Tesla static magnetic field to promote reparative dentine formation of dental pulp stem cells through activation of p38 MAPK signalling pathway[J]. Int Endod J, 2019, 52(1): 28-43.
[25] ZHENG L, ZHANG L, CHEN L, et al. Static magnetic field regulates proliferation, migration, differentiation and YAP/TAZ activation of human dental pulp stem cells[J]. J Tissue Eng Regen Med, 2018, 12(10): 2029-2040.
[26] CHEN G, ZHUO Y, TAO B, et al. Moderate SMFs attenuate bone loss in mice by promoting directional osteogenic differentiation of BMSCs[J]. Stem Cell Res Ther, 2020, 11(1): 487.
[27] 王芮琦, 张云龙, 方彦雯. 静磁场通过促进骨重建和血管生成治疗股骨头坏死[J]. 天津医科大学学报, 2024, 30(1): 29-34.
[1]王芮琦,张云龙,方彦雯,等.静磁场通过促进骨重建和血管生成治疗股骨头坏死[J].天津医科大学学报,2024,30(01):29.[doi:10.20135/j.issn.1006-8147.2024.01.0029]
WANG Ruiqi,ZHANG Yunlong,FANG Yanwen,et al.A static magnetic field protects against osteonecrosis of the femoral head by promoting bone remodeling and angiogenesis[J].Journal of Tianjin Medical University,2024,30(05):29.[doi:10.20135/j.issn.1006-8147.2024.01.0029]
[2]薛玲,李心乐,方彦雯,等.静磁场对股骨头坏死继发肌肉萎缩的修复效应及血管生成机制研究[J].天津医科大学学报,2025,31(05):404.[doi:10.20135/j.issn.1006-8147.2025.05.0404]
XUE Ling,LI Xinle,FANG Yanwen,et al.Study of the mechanism of the repair effect and angiogenesis of static magnetic field on muscle atrophy secondary to femoral head necrosis[J].Journal of Tianjin Medical University,2025,31(05):404.[doi:10.20135/j.issn.1006-8147.2025.05.0404]