|本期目录/Table of Contents|

[1]刘奇,李心乐,方彦雯,等.稳态磁场对股骨头坏死大鼠骨髓间充质干细胞的调控作用研究[J].天津医科大学学报,2025,31(05):389-395.[doi:10.20135/j.issn.1006-8147.2025.05.0389]
 LIU Qi,LI Xinle,FANG Yanwen,et al.Study on the regulatory effect of static magnetic field on bone marrow mesenchymal stem cells in rats with osteonecrosis of the femoral head[J].Journal of Tianjin Medical University,2025,31(05):389-395.[doi:10.20135/j.issn.1006-8147.2025.05.0389]
点击复制

稳态磁场对股骨头坏死大鼠骨髓间充质干细胞的调控作用研究(PDF)
分享到:

《天津医科大学学报》[ISSN:1006-8147/CN:12-1259/R]

卷:
31卷
期数:
2025年05期
页码:
389-395
栏目:
骨病专题
出版日期:
2025-09-20

文章信息/Info

Title:
Study on the regulatory effect of static magnetic field on bone marrow mesenchymal stem cells in rats with osteonecrosis of the femoral head
文章编号:
1006-8147(2025)05-0389-07
作者:
刘奇1李心乐1方彦雯2卫敏2廖钟财2杨磊3张平13
1.天津医科大学基础医学院人体解剖学系,天津 300070;2.和也健康科技有限公司,安吉 313399;3.河北工业大学生命科学与健康工程学院,健康科学与工程研究中心,河北省生物医学材料与智能诊疗重点实验室,天津 300401
Author(s):
LIU Qi1 LI Xinle1 FANG Yanwen2 WEI Min2 LIAO Zhongcai2 YANG Lei3 ZHANG Ping13
1. Department of Anatomy, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China;2. Heye Health Technology Co., Ltd., Anji 313399, China;3. Center for Health Science and Engineering, Hebei Key Laboratory of Biomaterials and Smart Theranostics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300401, China
关键词:
稳态磁场股骨头坏死骨髓间充质干细胞成骨分化细胞迁移
Keywords:
static magnetic field osteonecrosis of the femoral head bone marrow mesenchymal stem cells osteogenic differentiation cell migration
分类号:
R68
DOI:
10.20135/j.issn.1006-8147.2025.05.0389
文献标志码:
A
摘要:
目的:探究稳态磁场对创伤性股骨头坏死大鼠的骨髓间充质干细胞(BMSCs)的调控作用。方法:将27只雄性Sprague-Dawley(SD)大鼠随机分为3组:假手术组(Sham组)、股骨头坏死模型组(ON组)和稳态磁场治疗组(ONS组),每组9只。通过外科手术建立创伤性股骨头坏死模型,使用自主研发的200 mT稳态磁场装置对大鼠进行干预,持续暴露28 d。应用micro-CT检测骨密度。HE染色评估股骨头坏死大鼠的病理学改变。MacNeal′s染色观察成骨细胞数目变化。分离骨髓细胞,通过Transwell、划痕愈合、ALP染色及茜素红染色实验,检验稳态磁场对BMSCs增殖、迁移、成骨分化及矿化的影响。Western印迹分析检测Runx2的表达水平。结果:与ON组相比,ONS组骨小梁体积分数(BV/TV)和梁小梁厚度(Tb.Th)显著升高(t=-2.272、 -3.260,均P<0.01)、骨小梁数量(Tb.N)增加(t=-4.804,P<0.05),骨小梁分离度(Tb.Sp)降低(t=2.467,P<0.01),骨小梁面积与组织面积的比(B.Ar/T.Ar)提高(t=-3.593,P<0.05),股骨头软骨下骨区域的成骨细胞数量增多(t=-3.453,P<0.05)。细胞学实验中,与Sham组相比,ON组BMSCs增殖数目显著减少(t=4.505,P<0.01),BMSCs纵向迁移和划痕愈合能力均显著减弱(t=5.060、5.041,均P<0.001),ALP阳性细胞数显著减少(t=4.744,P<0.001),矿化的钙结节数量显著下降(t=3.269,P<0.01)。与ON组相比,ONS组大鼠BMSCs的增殖、纵向迁移、划痕愈合(t=-3.495、-3.469、-4.235,均P<0.05)、成骨分化和矿化均有所增强(t=-3.967、 -2.878,均P<0.05)。Western印迹分析显示,与ON组相比,ONS组Runx2(t=-5.569,P<0.01)的表达显著上调。结论:稳态磁场通过调控BMSCs的增殖、迁移、成骨分化和矿化,延缓创伤性股骨头坏死大鼠的病理进程。
Abstract:
Objective: To investigate the regulatory effects of static magnetic fields on bone marrow mesenchymal stem cells (BMSCs) in rats with traumatic osteonecrosis of the femoral head. Methods:A total of 27 male Sprague-Dawley (SD) rats were randomly divided into three groups: the sham operation group (Sham group), the osteonecrosis of the femoral head model group(ON group), and the static magnetic field treatment group (ONS group), with nine rats in each group. Anosteonecrosis of the femoral head model was surgically established, and the rats were intervened with a self-developed 200 mT static magnetic field device for a continuous exposure period of 28 days. Bone density was detected by applying micro-CT. HE staining was used to evaluate the pathological changes in rats with osteonecrosis of the femoral head. MacNeal′s staining was used to observe the changes in the number of osteoblasts. Bone marrow cells were isolated, and the effects of static magnetic fields on the proliferation, migration, osteogenic differentiation, and mineralization of bone marrow stromal cells (BMSCs) were examined using Transwell, scratch healing, alkaline phosphatase (ALP) staining, and alizarin red staining experiments. Western blotting analysis was performed to detect the expression level of runt-related transcription factor 2 (Runx2). Results: Compared with the ON group, BV/TV and Tb.Th were significantly increased(t=-2.272, -3.260, both P<0.01), Tb.N was raised(t=-4.804, P<0.05), Tb. Sp was decreased (t=2.467, P<0.01), and B.Ar/T.Ar was elevated(t=-3.593, P<0.05), the number of osteoblasts in the subchondral bone region of the femoral head was increased (t=-3.453, P<0.05)in the ONS group. In cytological experiments, compared with the Sham group, the ON group showed that the number of proliferating BMSCs was significantly reduced (t=4.505, P<0.01), the longitudinal migration and scratch healing ability of BMSCs were significantly weakened (t=5.060, 5.041, both P<0.001), the number of ALP-positive cells was significantly reduced (t=4.744, P<0.001), and the number of mineralized calcium nodules were significantly decreased (t=3.269, P<0.01). Compared with the ON group,the proliferation, longitudinal migration, scratch healing (t=-3.495, -3.469, -4.235, all P<0.05), osteogenic differentiation and mineralization of BMSCs(t=-3.967, -2.878, both P<0.05) were enhanced in the ONS group. Western blot ting analysis showed that compared with the ON group,the expression of Runx2(t=-5.569, P<0.01) was significantly upregulated in the ONS group. Conclusion: The static magnetic field delays the pathological process in rats with osteonecrosis of the femoral head by regulating the proliferation, migration, osteogenic differentiation, and mineralization of BMSCs.

参考文献/References:

[1] ZHANG J, CAO J, LIU Y, et al. Advances in the pathogenesis of steroid-associated osteonecrosis of the femoral head[J]. Biomo-lecules, 2024, 14(6): 667.
[2] DENG Z, KIM H K W, HERNANDEZ P A, et al. Fat phagocytosis promotes anti-inflammatory responses of macrophages in a mouse model of osteonecrosis[J]. Cells, 2024, 13(14): 1227.
[3] YANG H, NIE S, ZHOU C, et al. Palliative effect of rotating magnetic field on glucocorticoid-induced osteonecrosis of the femoral head in rats by regulating osteoblast differentiation[J]. Biochem Bio-phys Res Commun, 2024, 725: 150265.
[4] DUAN L, ZUO J, ZHANG F, et al. Magnetic targeting of HU-MSCs in the treatment of glucocorticoid-associated osteonecrosis of the femoral head through Akt/Bcl2/Bad/Caspase-3 pathway[J]. Int J Na-nomedicine, 2020, 15: 3605-3620.
[5] XU H H, LI S M, FANG L, et al. Platelet-rich plasma promotes bone formation, restrains adipogenesis and accelerates vascularization to relieve steroids-induced osteonecrosis of the femoral head[J]. Platelets, 2021, 32(7): 950-959.
[6] WANG A, REN M, WANG J. The pathogenesis of steroid-induced osteonecrosis of the femoral head: a systematic review of the literature[J]. Gene, 2018, 671: 103-109.
[7] XU Y, JIANG Y, XIA C, et al. Stem cell therapy for osteonecrosis of femoral head: opportunities and challenges[J]. Regen Ther, 2020, 15: 295-304.
[8] VATSA P, NEGI R, ANSARI U A, et al. Insights of extracellular vesicles of mesenchymal stem cells: a prospective cell-free regenerative medicine for neurodegenerative disorders[J]. Mol Neurobiol, 2022, 59(1): 459-474.
[9] NAITO Y, YAMADA S, JINNO Y, et al. Bone-forming effect of a static magnetic field in rabbit femurs[J]. Int J Periodontics Restor-ative Dent, 2019, 39(2): 259-264.
[10] LIU L, GUO S, SHI W, et al. Bone marrow mesenchymal stem cell-derived small extracellular vesicles promote periodontal regeneration[J]. Tissue Eng Part A, 2021, 27(13-14): 962-976.
[11] 李佳琪, 石瑞兴, 徐佳瑶. 磁场调控纳米生物催化的研究进展与生物医学应用[J]. 生物化学与生物物理进展, 2024, 51(12): 3123-3135.
[12] YANG J, ZHOU S, LV H, et al. Static magnetic field of 0.2-0.4 T promotes the recovery of hindlimb unloading-induced bone loss in mice[J]. Int J Radiat Biol, 2021, 97(5): 746-754.
[13] YANG J, FENG Y, LI Q, et al. Evidence of the static magnetic field effects on bone-related diseases and bone cells[J]. Prog Biophys Mol Biol, 2023, 177: 168-180.
[14] WANG J, SHANG P. Static magnetic field: a potential tool of controlling stem cells fates for stem cell therapy in osteoporosis[J]. Prog Biophys Mol Biol, 2023, 178: 91-102.
[15] LIU D, LI X, LI J, et al. Knee loading protects against osteonecrosis of the femoral head by enhancing vessel remodeling and bone healing[J]. Bone, 2015, 81: 620-631.
[16] SUN Y, FANG Y, LI X, et al. A static magnetic field enhances the repair of osteoarthritic cartilage by promoting the migration of stem cells and chondrogenesis[J]. J Orthop Translat, 2023, 39: 43-54.
[17] WANG X, LI X, LI J, et al. Mechanical loading stimulates bone angiogenesis through enhancing type H vessel formation and downregulating exosomal miR-214-3p from bone marrow-derived mesenchymal stem cells[J]. FASEB J, 2021, 35(1): e21150.
[18] IMAI Y, KANIE K, KATO R. Morphological heterogeneity descri-ption enabled early and parallel non-invasive prediction of T-cell proliferation inhibitory potency and growth rate for facilitating donor selection of human mesenchymal stem cells[J]. Inflamm Regen, 2022, 42(1): 8.
[19] ZHANG Y, LI X, LI J, et al. Knee loading enhances the migration of adipose-derived stem cells to the osteoarthritic sites through the SDF-1/CXCR4 regulatory axis[J]. Calcif Tissue Int, 2022, 111(2): 171-184.
[20] WU H, LI C, MASOOD M, et al. Static magnetic fields regulate T-type calcium ion channels and mediate mesenchymal stem cells proliferation[J]. Cells, 2022, 11(15): 2460.
[21] 宋国丽, 周翠红, 张宇. 静磁场对骨髓间充质干细胞增殖及骨向分化的影响[J]. 中国康复理论与实践, 2014, 20(4): 322-326.
[22] CHUO W, MA T, SAITO T, et al. A preliminary study of the effect of static magnetic field acting on rat bone marrow mesenchymal stem cells during osteogenic differentiation in vitro[J]. J Hard Tissue Biol, 2013, 22(2): 227-232.
[23] MAR DZIAK M, TOMASZEWSKI K, POLINCEUSZ P, et al. Static magnetic field enhances the viability and proliferation rate of adipose tissue-derived mesenchymal stem cells potentially through activation of the phosphoinositide 3-kinase/Akt(PI3K/Akt) pathway[J]. Electromagn Biol Med, 2016, 36(1): 45-54.
[24] LEW W Z, FENG S W, LIN C T, et al. Use of 0.4‐Tesla static magnetic field to promote reparative dentine formation of dental pulp stem cells through activation of p38 MAPK signalling pathway[J]. Int Endod J, 2019, 52(1): 28-43.
[25] ZHENG L, ZHANG L, CHEN L, et al. Static magnetic field regulates proliferation, migration, differentiation and YAP/TAZ activation of human dental pulp stem cells[J]. J Tissue Eng Regen Med, 2018, 12(10): 2029-2040.
[26] CHEN G, ZHUO Y, TAO B, et al. Moderate SMFs attenuate bone loss in mice by promoting directional osteogenic differentiation of BMSCs[J]. Stem Cell Res Ther, 2020, 11(1): 487.
[27] 王芮琦, 张云龙, 方彦雯. 静磁场通过促进骨重建和血管生成治疗股骨头坏死[J]. 天津医科大学学报, 2024, 30(1): 29-34.

相似文献/References:

[1]王芮琦,张云龙,方彦雯,等.静磁场通过促进骨重建和血管生成治疗股骨头坏死[J].天津医科大学学报,2024,30(01):29.[doi:10.20135/j.issn.1006-8147.2024.01.0029]
 WANG Ruiqi,ZHANG Yunlong,FANG Yanwen,et al.A static magnetic field protects against osteonecrosis of the femoral head by promoting bone remodeling and angiogenesis[J].Journal of Tianjin Medical University,2024,30(05):29.[doi:10.20135/j.issn.1006-8147.2024.01.0029]
[2]薛玲,李心乐,方彦雯,等.静磁场对股骨头坏死继发肌肉萎缩的修复效应及血管生成机制研究[J].天津医科大学学报,2025,31(05):404.[doi:10.20135/j.issn.1006-8147.2025.05.0404]
 XUE Ling,LI Xinle,FANG Yanwen,et al.Study of the mechanism of the repair effect and angiogenesis of static magnetic field on muscle atrophy secondary to femoral head necrosis[J].Journal of Tianjin Medical University,2025,31(05):404.[doi:10.20135/j.issn.1006-8147.2025.05.0404]

备注/Memo

备注/Memo:
基金项目:国家自然科学基金资助项目(81772405,81572100);和也健康科技重明鸟计划(2021006,2022016)
作者简介:刘奇(2000-),女,硕士在读,研究方向:稳态磁场通过骨髓间充质干细胞对股骨头坏死的治疗研究;通信作者:张平,E-mail:pizhang2008@163.com。
更新日期/Last Update: 2025-10-01