[1] VOSS M J,M?魻LLER M F,POWE D G,et al.Luminal and basal-like breast cancer cells show increased migration induced by hypoxia,mediated by an autocrine mechanism[J]. BMC Cancer,2011,11:158.
[2] VAUPEL P,MAYER A,HOCKEL M. Tumour hypoxia and malignant progression[J]. Methods Enzymol,2004,381:335-354.
[3] VAUPEL P. Prognostic potential of the pre-therapeutic tumour oxygenation status[J]. Adv Exp Med Biol,2009,645:241-246.
[4] RANKIN E B,GIACCIA A J. Hypoxic control of metastasis[J]. Science,2016,352(6282):175-180.
[5] DENGLER V L,GALBRAITH M D,ESPINOSA J M. Transcriptional regulation by hypoxia inducible factors[J]. Crit Rev Biochem Mol Biol,2014,49:1-15.
[6] LIU Z J,SEMENZA G L,ZHANG H F. Hypoxia-inducible factor 1 and breast cancer metastasis[J]. J Zhejiang Univ Sci B,2015,16(1):32-43.
[7] WANG J,LI W,ZHAO Y,et al.Members of FOX family could be drug targets of cancers[J]. Pharmacol Ther ,2018,181:183-196.
[8] RAEIS V,PHILIP-COUDERC P,ROATTIA,et al. Central venous hypoxemia is a determinant of human atrial ATP-sensitive potassium channel expression:evidence for a novel hypoxia-inducible factor 1alpha-Forkhead box class O signaling pathway[J]. Hypertension,2010,55(5):1186-1192.
[9] ABDELHAFIZ A S,FOUAD M A,SAYED-AHMED M M,et al.Upregulation of FOXP3 is associated with severity of hypoxia and poor outcomes in COVID-19 patients[J]. Virology,2021,563:74-81.
[10] WANG X H,JIANG Z H,YANG H M,et al. Hypoxia-induced FOXO4/LDHA axis modulates gastric cancer cell glycolysis and progression[J]. Clin Transl Med,2021,11(1):e279.
[11] TAO Y,LIU Q,WU R,et al. Long noncoding RNA LUCAT1 enhances the survival and therapeutic effects of mesenchymal stromal cells post-myocardial infarction[J]. Mol Ther Nucleic Acids,2021,27:412-426.
[12] FENG J,ZHANG X,ZHU H,et al. FoxQ1 overexpression influences poor prognosis in non-small cell lung cancer,associates with the phenomenon of EMT[J]. PLoS ONE,2012,7:e39937.
[13] QIAO Y,JIANG X,LEE S T,et al. FOXQ1 regulates epithelial-mesenchymal transition in human cancers[J]. Cancer Res,2011,71(8):3076-3086.
[14] GAO M,SHIH IEM,WANG T L. The role of forkhead box Q1 transcription factor in ovarian epithelial carcinomas[J]. Int J Mol Sci,2012,13:13881-13893.
[15] ZHANG H,MENG F,LIU G,et al. Forkhead transcription factor foxq1 promotes epithelial-mesenchymal transition and breast cancer metastasis[J]. Cancer Res,2011,71(4):1292-301.
[16] MALI P,YANG L,ESVELT K M,et al. RNA-guided human genome engineering via Cas9 [J]. Science,2013,339(6121):823-826.
[17] DELTCHEVA E,CHYLINSKI K,SHARMA C M,et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III [J]. Nature,2011,471(7340):602-607.
[18] WYMAN C,KANAAR R. DNA double-strand break repair:all's well that ends well [J]. Annu Rev Genet,2006,40:363-383.
[19] SAATCI O,KAYMAK A,RAZA U,et al. Targeting lysyl oxidase(LOX) overcomes chemotherapy resistance in triple negative breast cancer [J]. Nat Commun,2020,11(1):2416.
[20] HU D,LINDERS A,YAMAK A,et al. Metabolic maturation of human pluripotent stem cell-derived cardiomyocytes by inhibition of HIF1α and LDHA [J]. Circ Res,2018,123(9):1066-1079.
[21] MIMURA I,NANGAKU M,KANKI Y,et al.Dynamic change of chromatin conformation in response to hypoxia enhances the expression of GLUT3(SLC2A3) by cooperative interaction of hypoxia-inducible factor 1 and KDM3A[J]. Mol Cell Biol,2012,32(15):3018-3032.
[22] CONG L,RAN F A,COX D,et al. Multiplex genome engineering using CRISPR/Cas systems [J]. Science,2013,339(6121):819-823.
[23] WANG S W,GAO C,ZHENG Y M,et al. Current applications and future perspective of CRISPR/Cas9 gene editing in cancer [J]. Mol Cancer,2022,21(1):57.
[24] ZHU H,WANG D,ZHANG L,et al. Upregulation of autophagy by hypoxia-inducible factor-1α promotes EMT and metastatic ability of CD133+ pancreatic cancer stem-like cells during intermittent hypoxia[J]. Oncol Rep,2014,32(3):935-942.
[25] YANG M H,WU K J. TWIST activation by hypoxia inducible factor-1(HIF-1):implications in metastasis and development[J]. Cell Cycle,2008,7:2090-2096.
[26] ABBA M,PATIL N,RASHEED K,et al. Unraveling the role of FOXQ1 in colorectal cancer metastasis[J]. Mol Cancer Res,2013,11(9):1017-1028.
[27] ZHANG J,LIU Y,ZHANG J,et al.FOXQ1 promotes gastric cancer metastasis through upregulation of Snail[J]. Oncol Rep,2016,35(6):3607-3613.
[28] XIA L,HUANG W,TIAN D,et al. Forkhead box Q1 promotes hepatocellular carcinoma metastasis by transactivating ZEB2 and VersicanV1 expression[J]. Hepatology,2014,59(3):958-973.
[1]刘郁莹,崔晓腾,高星杰,等.利用改良的CRISPR/Cas9基因编辑系统构建HeLa细胞SND1基因敲除稳定株[J].天津医科大学学报,2015,21(06):480.
LIU Yu-ying,CUI Xiao-teng,GAO Xing-jie,et al.Construction of HeLa SND1 knockout gene stable strain by using modified CRISPR/Cas9 gene editing system[J].Journal of Tianjin Medical University,2015,21(05):480.
[2]张 静,高 雅,李新宇,等.SUZ12过表达及敲减恶性外周神经鞘瘤稳定细胞株的建立及其意义[J].天津医科大学学报,2019,25(05):429.
ZHANG Jing,GAO Ya,LI Xin-yu,et al.Establishment and significance of SUZ12 overexpression and knockdown of stable malignant peripheral nerve sheath tumor cell lines[J].Journal of Tianjin Medical University,2019,25(05):429.
[3]武晓静,陈玉霞,麻献华,等.利用CRISPR/Cas9技术体内标记示踪小鼠内源性NPC1L1蛋白[J].天津医科大学学报,2022,28(01):53.
WU Xiao-jing,CHEN Yu-xia,MA Xian-hua,et al.Genetic labeling and tracing of mouse endogenous NPC1L1 protein by CRISPR/Cas9 technology in vivo[J].Journal of Tianjin Medical University,2022,28(05):53.
[4]张佳慧,阎晗,胡德庆.利用CRISPR/Cas9技术构建Aff4基因敲除B16-F10细胞系及AFF4的多克隆抗体制备[J].天津医科大学学报,2023,29(04):372.
ZHANG Jia-hui,YAN Han,HU De-qing.Aff4 gene knockout stable B16-F10 cell line generation with CRISPR/Cas9 system and anti-AFF4 polyclonal antibody preparation[J].Journal of Tianjin Medical University,2023,29(05):372.
[5]董玥湘,刘岩,靳小石,等.应用CRISPR/Cas9技术敲除SLC5A8基因对黑色素瘤的影响[J].天津医科大学学报,2024,30(02):128.[doi:10.20135/j.issn.1006-8147.2024.02.0128]
DONG Yuexiang,LIU Yan,JIN Xiaoshi,et al.Effect of knockdown of SLC5A8 gene on melanoma by applying CRISPR/Cas9 technology[J].Journal of Tianjin Medical University,2024,30(05):128.[doi:10.20135/j.issn.1006-8147.2024.02.0128]