|本期目录/Table of Contents|

[1]陈鑫,吕慧珍,艾玎.周期性拉伸通过组蛋白乳酸化修饰调控平滑肌细胞增殖功能[J].天津医科大学学报,2023,29(05):494-499,531.
 CHEN Xin,LYU Hui-zhen,AI Ding.Cyclic stretch regulates smooth muscle cell proliferation through histone lactylation modification[J].Journal of Tianjin Medical University,2023,29(05):494-499,531.
点击复制

周期性拉伸通过组蛋白乳酸化修饰调控平滑肌细胞增殖功能(PDF)
分享到:

《天津医科大学学报》[ISSN:1006-8147/CN:12-1259/R]

卷:
29卷
期数:
2023年05期
页码:
494-499,531
栏目:
基础医学
出版日期:
2023-09-20

文章信息/Info

Title:
Cyclic stretch regulates smooth muscle cell proliferation through histone lactylation modification
文章编号:
1006-8147(2023)05-0494-07
作者:
陈鑫吕慧珍艾玎
(天津医科大学基础医学院生理学与病理生理学系,天津300070)
Author(s):
CHEN XinLYU Hui-zhenAI Ding
(Department of Physiology and Pathophysiology,School of Basic Medical Sciences,Tianjin Medical University,Tianjin 300070,China)
关键词:
周期性拉伸乳酸组蛋白乳酸化修饰血管平滑肌细胞
Keywords:
cyclic stretchlactatehistonelactylation modificationsmooth muscle cells
分类号:
R363.1+
DOI:
-
文献标志码:
A
摘要:
目的:利用细胞单轴周期性拉伸模型,探究静脉移植手术后的周期性拉伸应力对血管平滑肌细胞(VSMC)组蛋白乳酸化修饰的影响。方法:使用细胞单轴周期性拉伸装置,对大鼠原代VSMC给予拉伸幅度15%、频率1 Hz的拉伸刺激来模拟动脉的周期性拉伸,对照组以细胞静止于拉伸小室来模拟静脉的拉伸状态。细胞收样后,使用Western 印迹检测VSMC周期性拉伸24 h前后的增殖细胞核抗原(PCNA)和α平滑肌肌动蛋白(α-SMA)的蛋白水平,qPCR检测平滑肌细胞增殖和分化基因的mRNA水平。随后用比色法检测周期性拉伸前后细胞内的乳酸含量,并提取在两种不同力学条件下处理24 h的VSMC的组蛋白来检测泛和位点特异性的乳酸化修饰水平。结果:Western 印迹结果说明,和静息状态相比,VSMC周期性拉伸24 h后的PCNA蛋白水平没有明显变化(P=0.777),α-SMA的蛋白水平下降(t=4.715,P<0.01)。qPCR结果显示,和静息状态相比,PCNA的mRNA水平在VSMC周期性拉伸12 h后上升,24 h恢复到初始水平;细胞周期蛋白Ccnd1和Cdk6的mRNA水平呈时间依赖性上升,细胞周期依赖性激酶抑制剂Cdkn1a和分化相关基因Acta2、Tagln的mRNA水平呈时间依赖性下降。比色法结果显示,和静息状态相比,VSMC周期性拉伸24 h后的乳酸积累增加(t=5.554,P<0.01)。Western 印迹结果显示,和静息状态相比,VSMC周期性拉伸24 h后的泛乳酸化修饰水平上升(t=3.603,P<0.01),特异性位点乳酸化修饰如H3K9la、H3K14la和H3K18la的水平均增加。与静息状态(0 h)相比,H3K9la、H3K14la和H3K18la的水平显著增加(t=6.001、6.966、12.750,均P<0.000 1)。结论:周期性拉伸后VSMC的代谢状态发生改变,糖酵解的最终代谢产物乳酸积累增加,组蛋白乳酸化修饰水平也增加,这可能是引起VSMC增殖的原因。
Abstract:
Objective: To investigate the effect of cyclic stretch(CS) stress on histone lactylation modification in vascular smooth muscle cells (VSMC) after vein graft surgery using a cellular uniaxial cyclic stretching model. Methods: Using a uniaxial cyclic stretching device,the primary VSMCs of rats were subjected to stretch stimulus with a stretch amplitude of 15% and a frequency of 1 Hz to simulate the cyclic stretch of arteries,while cells static in the stretch chamber were to simulate the cyclic stretch of veins and served as control. After cell collection, Western blotting was used to detect PCNA and α-SMA protein levels before and after 24 h of cyclic stretching in VSMC. The mRNA levels of VSMC proliferation and differentiation-related genes were detected by qPCR. Subsequently,the intracellular lactate levels before and after cyclic stretch were detected by colorimetric assay. Histones of VSMC treated under two different mechanical conditions for 24 h were extracted for detection of pan- and site-specific lysine lactonization levels. Results: Western blotting results showed that the protein level of PCNA did not change significantly after 24 hours of cyclic stretch of VSMC compared with the static state(P=0.777),but α-SMA decreased(t=4.715,P<0.01). The qPCR results showed that the mRNA levels of PCNA increased after 12 h of VSMC cyclic stretch and returned to basal level at 24 h. The mRNA levels of cell cycle proteins Ccnd1 and Cdk6 increased in a time-dependent manner,and the mRNA levels of cell cycle-dependent kinase inhibitor Cdkn1a,differentiation-related genes Acta2 and Tagln decreased in a time-dependent manner. Colorimetric assay showed the accumulation of lactic acid in VSMC after 24 hours of periodic stretching elevated compared to static state(t=5.554,P<0.01). Western blotting results showed an increase in the level of pan-lysine lactation of VSMC after 24 hours of cyclic stretching compared to the static state(t=3.603,P<0.01),including significant elevation of site-specific lactation modifications such as H3K9la,H3K14la and H3K18la(t=6.001,6.966,12.75,all P<0.000 1). Compared with the resting state(0 h),the levels of H3K9la,H3K14la,and H3K18la were significantly increased. Conclusion:After cyclic stretch,the metabolic state of VSMC is altered,the accumulation of lactate as the final metabolite of glycolysis increases and the level of histone lactylation modifications also increases,which may be the cause of VSMC proliferation.

参考文献/References:

[1] EAGLE K A,GUYTON R A,DAVIDOFF R,et al. ACC/AHA 2004 guideline update for coronary artery bypass graft surgery:a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines(Committee to Update the 1999 Guidelines for Coronary Artery Bypass Graft Surgery)[J]. Circulation,2004,110:e340-e437.
[2] WADEY K,LOPES J,BENDECK M,et al. Role of smooth muscle cells in coronary artery bypass grafting failure[J]. Cardiovasc Res,2018, 114(4):601-610.
[3] YAHAGI K,KOLODGIE F D,OTSUKA F,et al. Pathophysiology of native coronary,vein graft,and instent atherosclerosis[J]. Nat Rev Cardiol,2015,13(2):79-98.
[4] CARREL T,WINKLER B. Current trends in selection of conduits for coronary artery bypass grafting[J]. Gen Thorac Cardiovasc Surg,2017,65(10):549-556.
[5] ZHANG D,TANG Z,Huang H,et al. Metabolic regulation of gene expression by histone lactylation[J]. Nature,2019,574(7779):575-580.
[6] KOZAI T,ETO M,YANG Z,et al. Statins prevent pulsatile stretch-induced proliferation of human saphenous vein smooth muscle cells via inhibition of Rho/Rho-kinase pathway[J]. Cardiovasc Res,2005,68(3):475-482.
[7] LIU S,LI Y,ZHANG Z,et al. Alpha1-adrenergic receptors mediate combined signals initiated by mechanical stretch stress and norepinephrine leading to accelerated mouse vein graft atherosclerosis[J]. J Vasc Surg,2013,57(6):1645-1656.
[8] PREDEL H G,YANG Z,VON SEGESSER L,et al. Implications of pulsatile stretch on growth of saphenous vein and mammary artery smooth muscle[J]. Lancet,1992,340(8824):878-879.
[9] MAYR M,LI C,ZOU Y,et al. Biomechanical stress-induced apoptosis in vein grafts involves p38 mitogen-activated protein kinases[J]. FASEB J,2000,14(2):261-270.
[10] CHENG J,DU J. Mechanical stretch simulates proliferation of venous smooth muscle cells through activation of the insulin-like growth factor-1 receptor[J]. Arterioscler Thromb Vasc Biol,2007,27(8):1744-1751.
[11] CHENG J,WANG Y,MA Y,et al. The mechanical stress-activated serum-,glucocorticoid-regulated kinase 1 contributes to neointima formation in vein grafts[J]. Circ Res,2010,107(10):1265-1274.
[12] DE WAARD V,ARKENBOUT E K,VOS M,et al. TR3 nuclear orphan receptor prevents cyclic stretch-induced proliferation of venous smooth muscle cells[J]. Am J Pathol,2006,168(6):2027-2035.
[13] PING S,LIU S,ZHOU Y,et al. Protein disulfide isomerase-mediated apoptosis and proliferation of vascular smooth muscle cells induced by mechanical stress and advanced glycosylation end products result in diabetic mouse vein graft atherosclerosis [J]. Cell Death Dis,2017,8(5):e2818.
[14] HUANG K,BAO H,YAN Z Q,et al. MicroRNA-33 protects against neointimal hyperplasia induced by arterial mechanical stretch in the grafted vein [J]. Cardiovasc Res,2017,113(5):488-497.
[15] LIU J T,LIU Z,CHEN Y,et al. MicroRNA-29a Involvement in phenotypic transformation of venous smooth muscle cells via ten-eleven translocation methylcytosinedioxygenase 1 in response to mechanical cyclic stretch[J]. J Biomech Eng,2020,142(5):051009..
[16] HUMPHREY J D,SCHWARTZ M A,TELLIDES G,et al. Role of mechanotransduction in vascular biology:focus on thoracic aortic aneurysms and dissections [J]. Circ Res,2015,116(8):1448-1461.
[17] CHIEN S. Mechanotransduction and endothelial cell homeostasis:the wisdom of the cell[J]. Am J Physiol Heart Circ Physiol,2007, 292(3):H1209-H1224.
[18] QI Y X,HAN Y,JIANG Z L. Mechanobiology and vascular remodeling:from membrane to nucleus[J]. Adv Exp Med Biol,2018,1097:69-82.
[19] RODR?魱GUEZ A I,CS?魣NYI G,RANAYHOSSAINI D J,et al. MEF2B-Nox1 signaling is critical for stretch-induced phenotypic modulation of vascular smooth muscle cells[J]. Arterioscler Thromb Vasc Biol,2015,35(2):430-438.
[20] WAN X J,ZHAO H C,ZHANG P,et al. Involvement of BK channel in differentiation of vascular smooth muscle cells induced by mechanical stretch[J]. Int J Biochem Cell Biol,2015,59:21-29.
[21] TANG Y,JIA Y,FAN L,et al. MFN2 prevents neointimal hyperplasia in vein grafts via destabilizing PFK1[J]. Circ Res,2022,130(11):e26-e43.
[22] YANG L,GAO L,NICKEL T,et al. Lactate promotes synthetic phenotype in vascular smooth muscle cells[J]. Circ Res,2017,121(11):1251-1262.
[23] CHEN Z,LIU M,LI L,et al.Involvement of the Warburg effect in non-tumor diseases processes[J]. J Cell Physiol,2018,233(4):2839-2849.
[24] CHIONG M,MORALES P,TORRES G,et al. Influence of glucose metabolism on vascular smooth muscle cell proliferation[J]. Vasa,2013,42(1):8-16.
[25] ZHOU Q,XU J,LIU M,et al. Warburg effect is involved in apelin-13-induced human aortic vascular smooth muscle cells proliferation[J]. J Cell Physiol,2019,234(9):14413-14421.
[26] XIAO Y,PENG H,HONG C,et al. PDGF promotes the Warburg effect in pulmonary arterial smooth muscle cells via activation of the PI3K/Akt/mTOR/HIF-1alpha signaling pathway[J]. Cell Physiol Biochem,2017,42(4):1603-1613.
[27] WERLE M,KREUZER J,HOFELE J,et al. Metabolic control analysis of the Warburg-effect in proliferating vascular smooth muscle cells[J]. J Biomed Sci,2005,12(5):827-834.
[28] CHEN J,ZHANG M,LIU Y,et al. Histone lactylation driven by mROS-mediated glycolytic shift promotes hypoxic pulmonary hypertension[J]. J Mol Cell Biol,2023,14(12):mjac073.
[29] SCHAD J F,MELTZER K R,HICKS M R,et al. Cyclic strain upregulates VEGF and attenuates proliferation of vascular smooth muscle cells[J]. Vasc Cell,2011,3:21.
[30] YAO Q P,ZHANG P,QI Y X,et al. The role of SIRT6 in the differentiation of vascular smooth muscle cells in response to cyclic strain[J]. Int J Biochem Cell Biol,2014,49:98-104.
[31] WANG N,WANG W,WANG X,et al. Histonelactylation boosts reparative gene activation post-myocardial infarction[J]. Circ Res,2022,131(11):893-908.
[32] CUI H,XIE N,BANERJEE S,et al. Lung myofibroblasts promote macrophage profibrotic activity through lactate-induced histone lactylation[J]. Am J Respir Cell Mol Biol,2021,64(1):115-125.
[33] GU J,ZHOU J,CHEN Q,et al. Tumor metabolite lactate promotes tumorigenesis by modulating MOESIN lactylation and enhancing TGF-β signaling in regulatory T cells[J]. Cell Rep,2022,39(12):110986.

相似文献/References:

备注/Memo

备注/Memo:
基金项目 国家自然科学基金青年科学基金项目(82000423)
作者简介 陈鑫(1998-),女,硕士在读,研究方向:生物学;通信作者:艾玎,E-mail:edin2000cn@163.com。
更新日期/Last Update: 2023-09-25