|本期目录/Table of Contents|

[1]孙丹晨,王志慧,乔卫.基于网络药理学酸枣仁生物碱抗抑郁作用机制的研究[J].天津医科大学学报,2021,27(05):439-445,481.
 SUN Dan-chen,WANG Zhi-hui,QIAO Wei.Study on antidepressant mechanism of Ziziphi Spinosae Semen alkaloid based on network pharmacology[J].Journal of Tianjin Medical University,2021,27(05):439-445,481.
点击复制

基于网络药理学酸枣仁生物碱抗抑郁作用机制的研究(PDF)
分享到:

《天津医科大学学报》[ISSN:1006-8147/CN:12-1259/R]

卷:
27卷
期数:
2021年05期
页码:
439-445,481
栏目:
网络药理学专题
出版日期:
2021-09-10

文章信息/Info

Title:
Study on antidepressant mechanism of Ziziphi Spinosae Semen alkaloid based on network pharmacology
文章编号:
1006-8147(2021)05-0439-08
作者:
孙丹晨王志慧乔卫
(天津医科大学药学院天然药物学系,天津300070)
Author(s):
SUN Dan-chenWANG Zhi-huiQIAO Wei
(Department of Natural Medicines,College of Pharmacy,Tianjin Medical University,Tianjin 300070,China)
关键词:
酸枣仁生物碱网络药理学抗抑郁GO分析KEGG分析
Keywords:
ZSS alkaloidsnetwork pharmacologyantidepressantGO analysisKEGG analysis
分类号:
R961+R749.4
DOI:
-
文献标志码:
A
摘要:
目的:采用网络药理学方法预测酸枣仁生物碱抗抑郁的作用机制。方法:首先挖掘相关的数据库如TCMSP、TCMDatabase@Taiwan、Drug Bank、Pharm Mapper、DAVID等,获得酸枣仁生物碱的主要成分和生物碱抗抑郁的潜在作用靶点,并对潜在靶点进行KEGG通路和GO分析。进一步采用软件Cytoscape构建并分析“成分-靶点-通路”生物网络图,最终从整体角度预测酸枣仁生物碱抗抑郁的作用机制。结果:酸枣仁生物碱抗抑郁的主要成分包括荷叶碱(nuciferine)、原荷叶碱(nornuciferine)、右旋衡州乌药碱(coclaurine)、木兰花碱(magnoflorine),主要作用于钙调蛋白(CALM1)、表皮生长因子受体(EGFR)、糖原合成酶激酶-3β(GSK3B)、视黄酸受体(RXRA)等靶点,涉及并影响磷脂酰肌醇3激酶-蛋白激酶B(PI3K-Akt)、钙离子等信号通路以及丝裂原活化蛋白激酶(MAPK)级联、蛋白结合等生物进程,发挥抗抑郁作用。结论:初步预测获得酸枣仁生物碱抗抑郁作用机制,多成分-多靶点-多通路的特点符合中医整体综合作用理念。
Abstract:
Objective: To explore the anti-depression mechanism of total alkaloids from Ziziphi Spinosae Semen(ZSS) based on network pharmacology. Methods: First,major components and potential anti-depressant targets of ZSS alkaloids were obtained by mining relevant databases such as TCMSP,TCMDatabase@Taiwan,Drug Bank,Pharm Mapper,DAVID,etc. KEGG pathway and GO analysis were performed on the potential targets.Furthermore,the software Cytoscape was used to construct and analyze the biological network diagram of "component-target-pathway". Finally,the anti-depressive mechanism of ZSS alkaloids was predicted from an overall perspective. Results: It was predicted that the main anti-depressant components of ZSS alkaloids included nuciferine,nornuciferine,coclaurine and magnoflorine,which played an anti-depressant role mainly by acting on the targets of calmodulin-1(CALM1),epidermal growth factor receptor(EGFR),glycogen synthase kinase-3 beta(GSK3B) and retinoic acid receptor RXR-alpha(RXRA),influencing phosphatidylinositol 3-kinase-protein kinase B(PI3K-Akt) and calcium signaling pathways as well as mitogen-activated protein kinase(MAPK)cascade and protein binding biological processes. Conclusion: The antidepressant mechanism of ZSS alkaloids is preliminarily predicted,and the characteristics of multi-component,multi-target and multi-pathway are consistent with the concept of integrated action of traditional Chinese medicine.

参考文献/References:

[1] CARRICO C,MEYER J G,HE W,et al. The mitochondrial acylome emerges: proteomics,regulation by sirtuins,and metabolic and disease implications[J]. Cell Metab,2018,27(3):497
[2] PAPA L,GERMAIN D. Correction for papa and germain,"SirT3 regulates a novel arm of the mitochondrial unfolded protein response"[J]. Mol Cell Biol,2017,37(13):e00117
[3] ANSARI A,RAHMAN M S,SAHA S K,et al. Function of the SIRT3 mitochondrial deacetylase in cellular physiology,cancer,and neurodegenerative disease[J]. Aging Cell,2017,16(1):4
[4] JIANG Y,LIU J,CHEN D,et al. Sirtuin inhibition: strategies,inhibitors,and therapeutic potential[J]. Trends Pharmacol Sci,2017, 38(5):459
[5] RANGARAJAN P,KARTHIKEYAN A,LU J,et al. Sirtuin 3 regulates Foxo3a-mediated antioxidant pathway in microglia[J]. Neuroscience,2015,311:398
[6] WU J,ZENG Z,ZHANG W,et al. Emerging role of SIRT3 in mitochondrial dysfunction and cardiovascular diseases[J]. Free Radic Res,2019,53(2):139
[7] LUO K,HUANG W,TANG S. SIRT3 enhances glioma cell viability by stabilizing Ku70-BAX interaction[J]. Onco Targets Ther,2018, 11:7559
[8] SCHER M B,VAQUERO A,REINBERG D. SirT3 is a nuclear NAD+-dependent histone deacetylase that translocates to the mitochondria upon cellular stress[J]. Genes Dev,2007,21(8):920
[9] KRISHER R L,PRATHER R S. A role for the Warburg effect in preimplantation embryo development: metabolic modification to support rapid cell proliferation[J]. Mol Reprod Dev,2012,79(5):311
[10] BACCELLI I,GAREAU Y,LEHNERTZ B,et al. Mubritinib targets the electron transport chain complex Ⅰand reveals the landscape of OXPHOS dependency in acute myeloid leukemia[J]. Cancer Cell,2019,36(1):84
[11] POLLYEA D A,STEVENS B M,JONES C L,et al. Venetoclax with azacitidine disrupts energy metabolism and targets leukemia stem cells in patients with acute myeloid leukemia[J]. Nat Med,2018,24(12):1859
[12] WEI L,ZHOU Y,QIAO C,et al. Oroxylin a inhibits glycolysis-dependent proliferation of human breast cancer via promoting SIRT3-mediated SOD2 transcription and HIF1α destabilization[J]. Cell Death Dis,2015,6(4):e1714
[13] FAN J,SHAN C L,KANG H B,et al. Tyr phosphorylation of PDP1 toggles recruitment between ACAT1 and SIRT3 to regulate the pyruvate dehydrogenase complex[J]. Mol Cell,2014,53(4):534
[14] LIU H,LI S,LIU X,et al. SIRT3 overexpression inhibits growth of kidney tumor cells and enhances mitochondrial biogenesis[J]. J Proteome Res,2018,17(9):3143
[15] YANG H,ZHOU L,SHI Q,et al. SIRT3-dependent GOT2 acetylation status affects the malate-aspartate NADH shuttle activity and pancreatic tumor growth[J]. EMBO J,2015,34(8):1110
[16] ZHANG Y K,QU Y Y,LIN Y,et al. Enoyl-CoA hydratase-1 regulates mTOR signaling and apoptosis by sensing nutrients[J]. Nat Commun,2017,8(1):464
[17] XIONG Y L,WANG M X,ZHAO J B,et al. Sirtuin 3: a Janus face in cancer (review)[J]. Int J Oncol,2016,49(6):2227
[18] XIAO K,JIANG J,WANG W,et al. Sirt3 is a tumor suppressor in lung adenocarcinoma cells[J]. Oncol Rep,2013,30(3):1323
[19] YU W,DENU R A,KRAUTKRAMER K A,et al. Loss of SIRT3 provides growth advantage for B cell malignancies[J]. J Biol Chem,2016,291(7):3268
[20] WANG Y,SUNX,JI K,et al. Sirt3-mediated mitochondrial fission regulates the colorectal cancer stress response by modulating the Akt/PTEN signalling pathway[J]. Biomed Pharmacother,2018,105:1172
[21] LIU Y,LIU Y L,CHENG W,et al. The expression of SIRT3 in primary hepatocellular carcinoma and the mechanism of its tumor suppressing effects[J]. Eur Rev Med Pharmacol Sci,2017,21(5):978
[22] SENGUPTA A,HALDAR D. Humansirtuin 3(SIRT3) deacetylates histone H3 lysine 56 to promote nonhomologous end joining repair[J]. DNA Repair (Amst),2018,61:1
[23] MA J,LIU B,YU D,et al. SIRT3 deacetylase activity confers chemoresistance in AML via regulation of mitochondrial oxidative phosphorylation[J]. Br J Haematol,2019,187(1):49
[24] BERGAGGIO E,RIGANTI C,GARAFFO G,et al. IDH2 inhibition enhances proteasome inhibitor responsiveness in hematological malignancies[J]. Blood,2019,133(2):156
[25] LI M,CHIANG Y L,LYSSIOTIS C A,et al. Non-oncogene addiction to SIRT3 plays a critical role in lymphomagenesis[J]. Cancer Cell,2019,35(6):916
[26] LI H,FENG Z,WU W,et al. SIRT3 regulates cell proliferation and apoptosis related to energy metabolism in non-small cell lung cancer cells through deacetylation of NMNAT2[J]. Int J Oncol,2013,43(5):1420
[27] XU L X,HAO L J,MA J Q,et al. SIRT3 promotes the invasion and metastasis of cervical cancer cells by regulating fatty acid synthase[J]. Mol Cell Biochem,2020,464(1/2):11
[28] WANG Q,YE S,CHEN X,et al. Mitochondrial NOS1 suppresses apoptosis in colon cancer cells through increasing SIRT3 activity[J]. Biochem Biophys Res Commun,2019,515(4):517
[29] KIM Y S,GUPTA VP,JONES V M,et al. Context-dependent activation of SIRT3 is necessary for anchorage-independent survival and metastasis of ovarian cancer cells[J]. Oncogene,2020,39(8):1619
[30] NEELI P K,GOLLAVILLI P N,MALLAPPA S,et al. A novel metadherin Delta7 splice variant enhances triple negative breast cancer aggressiveness by modulating mitochondrial function via NFkB-SIRT3 axis[J]. Oncogene,2020,39(10):2088
[31] XIONG Y,WANG L,WANG S,et al. SIRT3 deacetylates and promotes degradation of P53 in PTEN-defective non-small cell lung cancer[J]. J Cancer Res Clin Oncol,2018,144(2):189
[32] WEI Z,SONG J,WANG G,et al. Deacetylation of serine hydroxymethyl-transferase 2 by SIRT3 promotes colorectal carcinogenesis[J]. Nat Commun,2018,9(1):4468
[33] JO H,PARK Y,KIM T,et al. Modulation of SIRT3 expression through CDK4/6 enhances the anti-cancer effect of sorafenib in hepatocellular carcinoma cells[J]. BMC Cancer,2020,20(1):332
[34] CASADEI G A,FALOPPI L,DEMATTEIS S,et al. Metformin and insulin impact on clinical outcome in patients with advanced hepatocellular carcinoma receiving sorafenib:validation study and biological rationale[J]. Eur J Cancer,2017,86:106
[35] HOU L,WANG R,WEI H,et al. ABT737 enhances ovarian cancer cells sensitivity to cisplatin through regulation of mitochondrial fission via Sirt3 activation[J]. Life Sci,2019,232:116561
[36] GUO R,LI Y,XUE Y,et al. SIRT3 increases cisplatin sensitivity of small-cell lung cancer through apoptosis[J]. Gene,2020,745:144629
[37] TORRENS-MAS M,OLIVER J,ROCA P,et al. SIRT3: oncogene and tumor suppressor in cancer[J]. Cancers (Basel),2017,9(7):90
[38] TORRENS-MAS M,HERNNDEZ-LPEZ R,OLIVER J,et al. Sirtuin 3 silencing improves oxaliplatin efficacy through acetylation of MnSOD in colon cancer[J]. J Cell Physiol,2018,233(8):6067
[39] GEORGE J,NIHAL M,SINGH C K,et al. 4′ -Bromo-resveratrol,a dual Sirtuin-1 and Sirtuin-3 inhibitor,inhibits melanoma cell growth through mitochondrial metabolic reprogramming[J]. Mol Carcinog,2019,58(10):1876
[40] MAHAJAN S S,SCIAN M,SRIPATHY S,et al. Development of pyrazolone and isoxazol-5-one cambinol analogues as sirtuin inhibitors[J]. J Med Chem,2014,57(8):3283
[41] CHENY,FU L L,WEN X,et al. Sirtuin-3(SIRT3),a therapeutic target with oncogenic and tumor-suppressive function in cancer[J]. Cell Death Dis,2014,5(2):e1047
[42] ZENG R,WANG X,ZHOU Q,et al. Icariin protects rotenone-induced neurotoxicity through induction of SIRT3[J]. Toxicol Appl Pharmacol,2019,379:114639
[43] GERTZ M,FISCHER F,NGUYEN G T,et al. Ex-527 inhibits Sirtuins by exploiting their unique NAD+-dependent deacetylation mechanism[J]. Proc Natl Acad Sci U S A,2013,110(30):E2772
[44] ALHAZZAZI T Y,KAMARAJAN P,XU Y,et al. A novel sirtuin-3 inhibitor,LC-0296,inhibits cell survival and proliferation,and promotes apoptosis of head and neck cancer cells[J]. Anticancer Res,2016,36(1):49
[45] CHEN M L,ZHU X H,RAN L,et al. Trimethylamine-N-Oxide induces vascular inflammation by activating the NLRP3 inflammasome through the SIRT3-SOD2-mtROS signaling pathway[J]. J Am Heart Assoc,2017,6(11):e002238
[46] WANG L J,YC L,HUANG C H,et al. Non-mitotic effect of albendazole triggers apoptosis of human leukemia cells via SIRT3/ROS/p38 MAPK/TTP axis-mediated TNF-α upregulation[J]. Biochem Pharmacol,2019,162:154
[47] GORSKA-PONIKOWSKA M,KUBAN-JANKOWSKA A,Eisler S,et al. 2-Methoxyestradiol affects mitochondrial biogenesis pathway and succinate dehydrogenase complex flavoprotein subunit a in osteosarcoma cancer cells[J]. Cancer Genomics Proteomics,2018,15(1):73

相似文献/References:

[1]胡 杨,吴雄志.基于网络药理学预测当归贝母苦参丸治疗前列腺癌作用靶点及细胞内信号转导通路[J].天津医科大学学报,2019,25(01):24.
 HU Yang,WU Xiong-zhi.Predicting the target and intracellular signal transduction pathway of angelica fritillariakushenpill in prostate cancer by a network pharmacology approach[J].Journal of Tianjin Medical University,2019,25(05):24.
[2]付精精,吴雄志.网络药理学探究神效瓜蒌散治疗乳腺癌作用机制[J].天津医科大学学报,2019,25(04):316.
 FU Jing-jing,WU Xiong-zhi.Action mechanism of Shenxiaogualousan in treatment of breast cancer by network pharmacology method[J].Journal of Tianjin Medical University,2019,25(05):316.
[3]张冬丽,于欢,李敏,等.基于网络药理学的熟地黄环烯醚萜类成分治疗类风湿性关节炎作用机制的初步探究[J].天津医科大学学报,2020,26(06):526.
 ZHANG Dong-li,YU Huan,LI Min,et al.A preliminary exploration on the mechanism of iridoids from Rehmanniae Radix Praeparata in the treatment of rheumatoid arthritis based on network pharmacology[J].Journal of Tianjin Medical University,2020,26(05):526.
[4]庞欣欣,张雅歌,彭紫凝,等.基于网络药理学研究冬虫夏草治疗膜性肾病的作用机制[J].天津医科大学学报,2021,27(01):55.
 PANG Xin-xin,ZHANG Ya-ge,PENG Zi-ning,et al.Study on the mechanism of Cordyceps sinensis in treating membranous nephropathy based on network pharmacology[J].Journal of Tianjin Medical University,2021,27(05):55.
[5]查玉杰,曹丽睿,何庆.基于网络药理学探讨三七抗急性肺损伤相关分子机制[J].天津医科大学学报,2021,27(05):446.
 ZHA Yu-jie,CAO Li-rui,HE Qing.Molecular mechanism of Panax notoginseng against acute lung injury based on network pharmacology[J].Journal of Tianjin Medical University,2021,27(05):446.
[6]王夏雨,施继禹,贾傲,等.基于网络药理学探讨清胰汤治疗急性胰腺炎的作用机制[J].天津医科大学学报,2021,27(05):454.
 WANG Xia-yu,SHI Ji-yu,JIA Ao,et al.Mechanism of QingyiTang in the treatment of acute pancreatitis based on network pharmacology[J].Journal of Tianjin Medical University,2021,27(05):454.
[7]陈帅,刘军舰,尚海涛,等.基于网络药理学、分子对接及实验探讨茵陈蒿汤调节阻塞性黄疸氧化应激的作用机制[J].天津医科大学学报,2021,27(06):595.
 CHEN Shuai,LIU Jun-jian,SHANG Hai-tao,et al.Based on network pharmacology,molecular docking,and experiments to explore the mechanism of Yinchenhao Decoction in regulating oxidative stress of obstructive jaundice[J].Journal of Tianjin Medical University,2021,27(05):595.
[8]赵妍,赵晶晶,刘爱芬,等.基于网络药理学探讨托法替布联合甲氨蝶呤治疗 类风湿关节炎的作用机制[J].天津医科大学学报,2022,28(03):272.
 ZHAO Yan,ZHAO Jing-jing,LIU Ai-fen,et al.Systematic elaboration of the mechanism of tofacitinib combined with methotrexate in the treatment of rheumatoid arthritis via network pharmacology[J].Journal of Tianjin Medical University,2022,28(05):272.
[9]王坤,王鑫,李琳,等.基于网络药理学及分子对接发掘当归-川芎药对治疗肺栓塞的作用机制[J].天津医科大学学报,2022,28(05):519.
 WANG Kun,WANG Xin,LI Lin,et al.Research of the pharmacological mechanism of drup pair Angelicae Sinensis Radix-Chuanxiong Rhizoma against pulmonary embolism based on network pharmacology and molecular docking[J].Journal of Tianjin Medical University,2022,28(05):519.
[10]王志慧,乔卫.基于网络药理学探讨阿朴菲类生物碱抗抑郁的作用机制[J].天津医科大学学报,2022,28(06):591.
 WANG Zhi-hui,QIAO Wei.Exploring the antidepressant mechanism of aporphine alkaloids based on network pharmacology[J].Journal of Tianjin Medical University,2022,28(05):591.

备注/Memo

备注/Memo:
基金项目 天津市自然科学基金重点项目(17JCZDJC33200)
作者简介 孙丹晨(1997-),女,硕士在读,研究方向:中药药效物质机制研究;通信作者:乔卫,E-mail:qiaowei@tmu.edu.cn。
更新日期/Last Update: 2021-09-01