|本期目录/Table of Contents|

[1]王月洁 综述,魏枫,任秀宝 审校.肿瘤相关巨噬细胞:守护者还是破坏者[J].天津医科大学学报,2021,27(02):199-203.
点击复制

肿瘤相关巨噬细胞:守护者还是破坏者(PDF)
分享到:

《天津医科大学学报》[ISSN:1006-8147/CN:12-1259/R]

卷:
27
期数:
2021年02期
页码:
199-203
栏目:
综述
出版日期:
2021-03-15

文章信息/Info

Title:
-
文章编号:
1006-8147(2021)02-0199-05
作者:
王月洁12 综述魏枫12任秀宝123 审校
(1.天津医科大学肿瘤医院生物技术研究室,天津300060;2.国家肿瘤临床医学研究中心,天津市“肿瘤防治”重点实验室,天津市恶性肿瘤临床医学研究中心,天津市肿瘤免疫与生物治疗重点实验室,天津300060; 3.天津医科大学肿瘤医院生物治疗科,天津300060)
Author(s):
-
关键词:
肿瘤相关巨噬细胞肿瘤转移预后免疫应答靶向治疗
Keywords:
-
分类号:
R730
DOI:
-
文献标志码:
A
摘要:
巨噬细胞是重要的免疫细胞之一,在人体组织内广泛分布。恶性肿瘤严重威胁人类生命,而肿瘤的发生和转移与肿瘤微环境(TME)有着密不可分的关系,其中肿瘤相关巨噬细胞(TAMs)主要分为经典活化途径的巨噬细胞(M1型)和替代性活化途径的巨噬细胞(M2型),在肿瘤的免疫应答和靶向治疗等方面发挥着作用。
Abstract:
-

参考文献/References:

[1] Guilliams M,Mildner A,Yona S. Developmental and functional heterogeneity of monocytes[J]. Immunity,2018,49(4):595
[2] Tacke F. Targeting hepatic macrophages to treat liver diseases[J]. J Hepatol,2017,66(6):1300
[3] Gomez Perdiguero E,Klapproth K,Schulz C,et al. Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors[J]. Nature,2015,518(7540):547
[4] Gherardini J,Uchida Y,Hardman J A,et al. Tissue-resident macrophages can be generated de novo in adult human skin from resident progenitor cells during substance P-mediated neurogenic inflammation ex vivo[J]. PLoS One,2020,15(1):e0227817
[5] Liu F,Dai S,Feng D,et al. Distinct fate,dynamics and niches of renal macrophages of bone marrow or embryonic origins[J]. Nat Commun,2020,11(1):2280
[6] Wang L X,Zhang S X,Wu H J,et al. M2b macrophage polarization and its roles in diseases[J]. J Leukoc Biol,2019,106(2):345
[7] Chen Z,Dong F,Lu J,et al. Polarized M2c macrophages have a promoting effect on the epithelial-to-mesenchymal transition of human renal tubular epithelial cells[J]. Immunobiology,2018,223(12):826
[8] Parsa R,Andresen P,Gillett A,et al. Adoptive transfer of immunomodulatory M2 macrophages prevents type 1 diabetes in NOD mice[J]. Diabetes,2012,61(11):2881
[9] Sugimura K,Miyata H,Tanaka K,et al. High infiltration of tumor-associated macrophages is associated with a poor response to chemotherapy and poor prognosis of patients undergoing neoadjuvant chemotherapy for esophageal cancer[J]. J Surg Oncol,2015,111(6):752
[10] Troiano G,Caponio V,Adipietro I,et al. Prognostic significance of CD68+ and CD163+ tumor associated macrophages in head and neck squamous cell carcinoma:a systematic review and meta-analysis[J]. Oral Oncol,2019,93:66
[11] Etzerodt A,Tsalkitzi K,Maniecki M,et al. Specific targeting of CD163+ TAMs mobilizes inflammatory monocytes and promotes T cell-mediated tumor regression[J]. J Exp Med,2019,216(10):2394
[12] Behnes C L,Bremmer F,Hemmerlein B,et al. Tumor-associated macrophages are involved in tumor progression in papillary renal cell carcinoma[J]. Virchows Arch,2014,464(2):191
[13] Kelley J L,Ozment T R,Li C,et al. Scavenger receptor-A (CD204):a two-edged sword in health and disease[J]. Crit Rev Immunol,2014,34(3):241
[14] Yuan Y,Zhao Q,Zhao S,et al. Characterization of transcriptome profile and clinical features of a novel immunotherapy target CD204 in diffuse glioma[J]. Cancer Med,2019,8(8):3811
[15] He Y,Zhou S,Deng F,et al. Clinical and transcriptional signatures of human CD204 reveal an applicable marker for the protumor phenotype of tumor-associated macrophages in breast cancer[J]. Aging (Albany NY),2019,11(23):10883
[16] Kawajiri A,Kitano S,Maeshima A M,et al. Association of CD204+ macrophages with poor outcomes of malignant lymphomas not in remission treated by allogeneic HCT[J]. Eur J Haematol,2019,103(6):578
[17] Mertens J S,de Jong E,van den Hoogen L L,et al. The identification of CCL18 as biomarker of disease activity in localized scleroderma[J]. J Autoimmun,2019,101:86
[18] Wang J,Qin Y,Zhu G,et al. High serum CCL18 predicts a poor prognosis in patients with laryngeal squamous cell carcinoma[J]. J Cancer,2019,10(27):6910
[19] Ye H,Zhou Q,Zheng S,et al. Tumor-associated macrophages promote progression and the Warburg effect via CCL18/NF-kB/VCAM-1 pathway in pancreatic ductal adenocarcinoma[J]. Cell Death Dis,2018,9(5):453
[20] Jing W,Guo X,Wang G,et al. Breast cancer cells promote CD169+ macrophage-associated immunosuppression through JAK2-mediated PD-L1 upregulation on macrophages[J]. Int Immunopharmacol,2020,78:106012
[21] Komohara Y,Ohnishi K,Takeya M. Possible functions of CD169-positive sinus macrophages in lymph nodes in anti-tumor immune responses[J]. Cancer Sci,2017,108(3):290
[22] Zhang Y,Li J Q,Jiang Z Z,et al. CD169 identifies an anti-tumour macrophage subpopulation in human hepatocellular carcinoma[J]. J Pathol,2016,239(2):231
[23] Sun C,Mezzadra R,Schumacher T N. Regulation and Function of the PD-L1 Checkpoint[J]. Immunity,2018,48(3):434
[24] Fuchs C S,Shitara K,Di Bartolomeo M,et al. Ramucirumab with cisplatin and fluoropyrimidine as first-line therapy in patients with metastatic gastric or junctional adenocarcinoma(RAINFALL):a double-blind,randomised,placebo-controlled,phase 3 trial[J]. Lancet Oncol,2019,20(3):420
[25] Balzan S,Lubrano V. LOX-1 receptor: a potential link in atherosclerosis and cancer[J]. Life Sci,2018,198:79
[26] Goulielmaki E,Bermudez-Brito M,Andreou M,et al. Pharmacological inactivation of the PI3K p110δ prevents breast tumour progression by targeting cancer cells and macrophages[J]. Cell Death Dis,2018,9(6):678
[27] Piaggio F,Kondylis V,Pastorino F,et al. A novel liposomal Clodronate depletes tumor-associated macrophages in primary and metastatic melanoma: Anti-angiogenic and anti-tumor effects[J]. J Control Release,2016,223:165
[28] Soto-Pantoja D R,Kaur S,Roberts D D. CD47 signaling pathways controlling cellular differentiation and responses to stress[J]. Crit Rev Biochem Mol Biol,2015,50(3):212
[29] Sikic B I,Lakhani N,Patnaik A,et al. First-in-human,first-in-class phase I trial of the anti-CD47 antibody Hu5F9-G4 in patients with advanced cancers[J]. J Clin Oncol,2019,37(12):946
[30] Petrova P S,Viller N N,Wong M,et al. TTI-621(SIRPαFc):a CD47-blocking innate immune checkpoint inhibitor with broad antitumor activity and minimal erythrocyte binding[J]. Clin Cancer Res,2017,23(4):1068
[31] Advani R,Flinn I,Popplewell L,et al. CD47 blockade by Hu5F9-G4 and rituximab in non-Hodgkin′s lymphoma[J]. N Engl J Med,2018,379(18):1711
[32] Shan M,Qin J,Jin F,et al. Autophagy suppresses isoprenaline-induced M2 macrophage polarization via the ROS/ERK and mTOR signaling pathway[J]. Free Radic Biol Med,2017,110:432

相似文献/References:

[1]孙亚军,傅正,朱志峰,等.基因芯片分析三肽化合物酪丝亮肽对人肝癌基因表达谱的影响[J].天津医科大学学报,2013,19(05):353.
[2]王 勇,陈雅婧 综述,岳 丹审校.YB-1对肿瘤增殖调控的研究进展[J].天津医科大学学报,2014,20(04):332.
[3]叶剑飞 综述. microRNAs与肿瘤研究的新进展[J].天津医科大学学报,2014,20(05):416.
[4]朱玉芬综述,李崖青,付 丽审校.肿瘤相关巨噬细胞与乳腺癌关系的研究进展[J].天津医科大学学报,2014,20(06):499.
[5]孙秀梅,张 飞 综 述,牛瑞芳 审校. Nanog及其假基因NanogP8在肿瘤中的研究进展[J].天津医科大学学报,2015,21(03):90.
[6]孙秀梅,张 飞 综 述,牛瑞芳 审校. Nanog及其假基因NanogP8在肿瘤中的研究进展[J].天津医科大学学报,2015,21(01):90.
[7]黄 纯 综述,李 凯 审校. 肿瘤免疫治疗与化疗的协同效应研究现状[J].天津医科大学学报,2015,21(04):363.
[8]孔令平,周 旋 综述,张 仑 审校.长链非编码RNA MALAT1在肿瘤中的研究进展[J].天津医科大学学报,2015,21(04):367.
[9]郭小凡 综述,邓靖宇,梁 寒 审校.PCDH10启动子甲基化与恶性肿瘤关系的研究进展[J].天津医科大学学报,2016,22(02):182.
[10]姚庆娟 综 述,孙龙昊,何向辉 审 校.自噬对肿瘤免疫微环境的调控作用及其相关治疗策略[J].天津医科大学学报,2019,25(02):180.

备注/Memo

备注/Memo:
基金项目 国家重点R&D计划(2018YFC1313400);国家重大科技专项“重大新药开发”(2018ZX09201-05)
作者简介 王月洁(1995-),女,硕士,研究方向:肿瘤的生物治疗研究;通信作者:任秀宝,E-mail:renxiubao@tjmuch.com。
更新日期/Last Update: 2021-03-10