|本期目录/Table of Contents|

[1]刘欢欢 综述,张 旭 审校.锶对骨生成的影响及其应用的研究进展[J].天津医科大学学报,2019,25(05):548-539.
点击复制

锶对骨生成的影响及其应用的研究进展(PDF)
分享到:

《天津医科大学学报》[ISSN:1006-8147/CN:12-1259/R]

卷:
25
期数:
2019年05期
页码:
548-539
栏目:
综述
出版日期:
2019-09-20

文章信息/Info

Title:
-
文章编号:
1006-8147(2019)05-0548-04
作者:
刘欢欢 综述 张 旭 审校
(天津医科大学口腔医院口腔内科教研室,天津 300070)
Author(s):
-
关键词:
促进成骨抑制破骨掺锶复合材料骨组织工程
Keywords:
-
分类号:
R318;R608
DOI:
-
文献标志码:
A
摘要:
锶作为生物体内必需的微量元素之一,在骨生成中发挥着重要作用。由于锶具有促进成骨和抑制破骨的双重效应,促进血管生成,改善骨质强度等作用,临床上应用于骨质疏松、骨肿瘤及骨转移瘤的治疗,多种掺锶复合材料在骨组织改建及诱导中的应用研究也逐渐增多。因此,锶在骨组织工程领域越来越受到关注。本文就锶对骨生成的影响及其应用研究进展做一综述。
Abstract:
-

参考文献/References:

[1] Lourenco A H, Neves N, Ribeiromachado C, et al. Injectable hybrid system for strontium local delivery promotes bone regeneration in a rat critical-sized defect model[J]. Sci Rep, 2017, 7(1):5098
[2] Kaufman J M, Audran M, Bianchi G, et al. Efficacy and safety of strontium ranelate in the treatment of osteoporosis in men[J]. J Clin Endocrinol Metab, 2013, 98(2):592
[3] Wang X, Wang Y, Li L, et al. Stimulations of strontium-doped calcium polyphosphate for bone tissue engineering to protein secretion and mRNA expression of the angiogenic growth factors from endothelial cells in vitro[J]. Ceram Int, 2014, 40(5):6999
[4] 任艳丽, 王建林. 锶的生物学效应研究进展[J]. 北京联合大学学报, 2018(1):44
[5] Reginster J Y. Cardiac concerns associated with strontium ranelate[J]. Expert Opin Drug Saf, 2014, 13(9):1209
[6] Kuroda I. Strontium-89 for prostate cancer with bone metastases: the potential of cancer control and improvement of overall survival[J]. Ann Nucl Med, 2014, 28(1):11
[7] Li Y, Li J, Zhu S, et al. Effects of strontium on proliferation and differentiation of rat bone marrow mesenchymal stem cells[J]. Biochem Biophys Res Commun, 2012, 418(4):725
[8] Zhu L L, Zaidi S, Peng Y, et al. Induction of a program gene expression during osteoblast differentiation with strontium ranelate[J]. Biochem Biophys Res Commun, 2007, 355(2):307
[9] Almeida M M, Nani E P, Teixeira L N, et al. Strontium ranelate increases osteoblast activity[J]. Tissue Cell, 2016, 48(3):183
[10] Reginster J Y, Brandi M L, Cannata-Andía J, et al. The position of strontium ranelate in today’s management of osteoporosis[J]. Osteoporos Int, 2015, 26(6):1667
[11] Saidak Z, Marie P J. Strontium signaling: Molecular mechanisms and therapeutic implications in osteoporosis[J]. Pharmacol Ther, 2012, 136(2):216
[12] Stuss M, Rieske P, Liberski P P, et al. Assessment of OPG/RANK/RANKL gene expression levels in peripheral blood mononuclear cells (PBMC) after treatment with strontium ranelate and ibandronate in patients with postmenopausal osteoporosis[J]. J Clin Endocrinol Metab, 2013, 98(5):E1007
[13] Bakker A D, Zandiehdoulabi B, Kleinnulend J. Strontium ranelate affects signaling from mechanically-stimulated osteocytes towards osteoclasts and osteoblasts[J]. Bone, 2013, 53(1):112
[14] Dougall W C. Molecular pathways: osteoclast-dependent and osteoclast-independent roles of the RANKL/RANK/OPG pathway in tumorigenesis and metastasis[J]. Clin Cancer Res, 2012, 18(2):326
[15] Caudrillier A, Hurtel-Lemaire A S, Wattel A, et al. Strontium ranelate decreases RANKL-induced osteoclastic differentiation in vitro: involvement of the calcium sensing receptor[J]. Mol Pharmacol, 2010, 10(1):226
[16] Wang X, Wang Y, Li L, et al. Stimulations of strontium-doped calcium polyphosphate for bone tissue engineering to protein secretion and mRNA expression of the angiogenic growth factors from endothelial cells in vitro[J]. Ceram Int, 2014, 40(5):6999
[17] Zhao F , Lei B , Li X , et al. Promoting in vivo early angiogenesis with sub-micrometer strontium-contained bioactive microspheres through modulating macrophage phenotypes[J]. Biomaterials, 2018, 178:36
[18] Huang C , Yu X , Gu Z , et al. The inhibitory effect of strontium-doped calcium polyphosphate particles on cytokines from macrophages and osteoblasts leading to aseptic loosening in vitro[J]. Biomed Mater, 2014, 9(2):025010
[19] Jr I N, Oliveira R Z, Achcar J, et al. Effect of Strontium Ranelate on Bone Metabolism of Elderly Men[J]. J Am Geriatr Soc, 2015, 63(12):2634
[20] Sugiyama T, Kim Y T, Oda H. Strontium Ranelate in the Treatment of Osteoporosis: A Possible Mechanism[J]. J Clin Endocrinol Metab, 2016, 101(5):L64
[21] Geng Z, Wang R, Zhuo X, et al. Incorporation of silver and strontium in hydroxyapatite coating on titanium surface for enhanced antibacterial and biological properties[J]. Materi Sci Eng C Mater Biol Appl, 2017, 71:852
[22] Ravi N D, Balu R, Kumar T S S. Strontium-Substituted Calcium Deficient Hydroxyapatite Nanoparticles: Synthesis, Characterization, and Antibacterial Properties[J]. J Am Ceram Soc, 2012, 95(9):2700
[23] Zhang J, Zhao S, Zhu Y, et al. Three-dimensional printing of strontium-containing mesoporous bioactive glass scaffolds for bone regeneration[J]. Acta Biomater, 2014, 10(5):2269
[24] Newman S D, Lotfibakhshaiesh N, O’Donnell M, et al. Enhanced osseous implant fixation with strontium-substituted bioactive glass coating[J]. Tissue Eng Part A, 2014, 20(13/14):1850
[25] Naruphontjirakul P, Porter A E, Jones J R. In vitro osteogenesis by intracellular uptake of strontium containing bioactive glass nanoparticles[J]. Acta Biomater, 2017, 66
[26] Xie H, Wang J, Li C, et al. Application of strontium doped calcium polyphosphate bioceramic as scaffolds for bone tissue engineering[J]. Ceram Int, 2013, 39(8):8945
[27] Wang X, Wang Y, Li L, et al. Stimulations of strontium-doped calcium polyphosphate for bone tissue engineering to protein secretion and mRNA expression of the angiogenic growth factors from endothelial cells in vitro[J]. Ceram Int, 2014, 40(5):6999
[28] Yang S, Wang L, Feng S, et al. Enhanced bone formation by strontium modified calcium sulfate hemihydrate in ovariectomized rat critical-size calvarial defects[J]. Biomed Mater, 2017, 12(3):035004
[29] Lin K, Liu P, Wei L, et al. Strontium substituted hydroxyapatite porous microspheres: Surfactant-free hydrothermal synthesis, enhanced biological response and sustained drug release[J]. Chem Eng J, 2013, 222(15):49
[30] Chhaya B, Vipin B. Evaluation of efficacy of autologous platelet-rich fibrin with demineralized-freeze dried bone allograft in the treatment of periodontal intrabony defects[J]. J Indian Soc Periodontol, 2013, 17(3):361
[31] Zhao Y, Guo D, Hou S, et al. Porous allograft bone scaffolds: doping with strontium[J]. PloS One, 2013, 8(7):e69339

相似文献/References:

备注/Memo

备注/Memo:
基金项目 国家自然科学基金资助项目(31870947)
作者简介 刘欢欢(1993-),女,硕士在读,研究方向:口腔生物材料;通信作者:张旭,E-mail:zhxden@126.com。
更新日期/Last Update: 2019-10-11