|本期目录/Table of Contents|

[1]孙春阳 综 述,于春水 审 校.肿瘤酸度响应高分子药物载体研究进展[J].天津医科大学学报,2019,25(02):176-179.
点击复制

肿瘤酸度响应高分子药物载体研究进展(PDF)
分享到:

《天津医科大学学报》[ISSN:1006-8147/CN:12-1259/R]

卷:
25
期数:
2019年02期
页码:
176-179
栏目:
综述
出版日期:
2019-03-20

文章信息/Info

Title:
-
文章编号:
1006-8147(2019)02-0176-04
作者:
孙春阳 综 述于春水 审 校
(天津医科大学总医院医学影像科,天津市功能影像重点实验室,天津300052)
Author(s):
-
关键词:
肿瘤酸度纳米药物载体肿瘤治疗响应性高分子体内输送屏障
Keywords:
-
分类号:
R318.08
DOI:
-
文献标志码:
A
摘要:
高分子药物载体可以提高药物输送效率,改善药物分布,增强抗肿瘤疗效并降低毒副作用。然而,研究结果显示,现有载体的设计仍存在诸多瓶颈,如组织渗透、肿瘤细胞摄取和胞内药物释放等,限制了载体疗效的进一步提高。肿瘤基质和肿瘤细胞内的低pH环境是由于肿瘤细胞正常的生理活动造成的,在各种实体瘤中均有发现,以其为基础构建智能响应性高分子药物载体,能够克服系统给药多重屏障,解决载体系统的实际问题,为载体系统的临床转化提供新的思路。
Abstract:
-

参考文献/References:


[1] Schroeder A, Heller D A, Winslow M M, et al. Treating metastatic cancer with nanotechnology[J].Nat Rev Cancer, 2011, 12(1):39
[2] Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs[J].Cancer Res, 1986, 46(12 Pt 1):6387
[3] Blanco E, Shen H, Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery[J].Nat Biotechnol, 2015, 33(9):941
[4] Min Y Z, Caster J M, Eblan M J, et al. Clinical translation of nanomedicine[J]. Chem Rev, 2015, 115(19, SI):11147
[5] Hare J I, Lammers T, Ashford M B, et al. Challenges and strategies in anti-cancer nanomedicine development: An industry perspective[J]. Adv Drug Deliv Rev, 2017, 108:25
[6] Shi J, Kantoff P W, Wooster R, et al. Cancer nanomedicine: progress, challenges and opportunities[J].Nat Rev Cancer,2017,17(1):20
[7] Liu Y, Xu C F, Iqbal S, et al. Responsive nanocarriers as an emerging platform for cascaded delivery of nucleic acids to cancer[J].Adv Drug Deliv Rev, 2017, 115:98
[8] Behzadi S, Serpooshan V, Tao W, et al. Cellular uptake of nanoparticles: journey inside the cell[J].Chem Soc Rev, 2017, 46(14):4218
[9] Chen H, Zhang W, Zhu G, et al. Rethinking cancer nanotheranostics[J]. Nature Reviews Materials, 2017, 2:17024
[10] Ge Z, Liu S. Functional block copolymer assemblies responsive to tumor and intracellular microenvironments for site-specific drug delivery and enhanced imaging performance[J].Chem Soc Rev, 2013, 42(17):7289
[11] Du J Z , Mao C Q,Yuan Y Y, et al. Tumor extracellular acidity-activated nanoparticles as drug delivery systems for enhanced cancer therapy[J].Biotechnol Adv,2013,32(4):789
[12] Feng L Z, Dong Z L,Tao D L, et al. The acidic tumor microenvironment:atarget for smart cancer nano-theranostics[J].Natl Sci Rev, 2018,5(2):269
[13] Li H J, Du J Z, Du X J, et al. Stimuli-responsive clustered nanoparticles for improved tumor penetration and therapeutic efficacy[J].Proc Natl Acad Sci U S A,2016,113(15):4164
[14] Li H J, Du J Z, Liu J, et al. Smart superstructures with ultrahigh pH-sensitivity for targeting acidic tumor microenvironment: instantaneous size switching and improved tumor penetration[J].ACS Nano,2016,10(7):6753
[15] Li J J, Han Y, Chen Q X, et al. Dual endogenous stimuli-responsive polyplex micelles as smart two-step delivery nanocarriers for deep tumor tissue penetration and combating drug resistance of cisplatin[J].J Mater Chem B,2014,2(13):1813
[16] Lee E S, Na K, Bae Y H.Super pH-sensitive multifunctional polymeric micelle[J].Nano Lett, 2005, 5(2):325
[17] Du J Z, Sun T M, Song W J, et al. A tumor-acidity-activated charge-conversional nanogel as an intelligent vehicle for promoted tumoral-cell uptake and drug delivery[J]. Angew Chem Int Ed Engl, 2010,49(21):3621
[18] Du J Z, Du X J, Mao C Q, et al. Tailor-made dual pH-sensitive polymer-doxorubicin nanoparticles for efficient anticancer drug delivery[J]. J Am Chem Soc,2011, 133(44):17560
[19] Yuan Y Y, Mao C Q, Du X J, et al. Surface charge switchable nanoparticles based on zwitterionic polymer for enhanced drug delivery to tumor[J]. Adv Mater, 2012, 24(40):5476
[20] Yang X Z, Du X J, Liu Y, et al. Rational design of polyion complex nanoparticles to overcome cisplatin resistance in cancer therapy[J]. Adv Mater, 2014, 26(6):931
[21] Sun C Y, Liu Y, Du J Z, et al. Facile generation of tumor pH-labile linkage-bridged block copolymer for expeditious chemotherapeutic delivery[J]. Angew Chem Int Ed, 2016,128(3):1010
[22] Sun C Y,ShenS,Xu C F, et al.Tumor acidity-sensitive polymeric vector for active targeted siRNA delivery[J].J Am Chem Soc,2015, 137(48):15217
[23] Xu C F, Zhang H B, Sun C Y, et al. Tumor acidity-sensitive linkage-bridged block copolymer for therapeutic siRNA delivery[J]. Biomaterials, 2016, 88:48
[24] Bashyal S,Noh G, Keum T, et al. Cell penetrating peptides as an innovative approach for drug delivery;then,present and the future[J].J Pharm Invest, 2016, 46(3):205
[25] Ruoslahti E. Tumor penetrating peptides for improved drug delivery[J].Adv Drug Deliv Rev,2017(3):110
[26] Li D, Ma Y, Du J, et al.Tumor acidity/NIR controlled interaction of transformable nanoparticle with biological systems for cancer therapy[J].Nano Lett,2017,17(5):2871
[27] Guo X, Wang L, Duval K, et al. Dimeric drug polymeric micelles with Acid-Active tumor targeting and FRET-Traceable drug release[J].Adv Mater, 2018,30(3):1705436
[28] Yu H J, Xu Z A, Wang D G, et al. Intracellular pH-activatable PEG-b-PDPA wormlike micelles for hydrophobicdrug delivery[J].Polym Chem, 2013, 4(19):5052
[29] Du Y, Chen W, Zheng M, et al. pH-sensitive degradable chimaericpolymersomes for the intracellular release of doxorubicin hydrochloride[J].Biomaterials, 2012,33(29):7291
[30] Zou J, Zhang F, Zhang S, et al. Poly(ethylene oxide)–block -polyphosphoester-graft-paclitaxel conjugates with acid-labile linkages as a pH-sensitive and functional nanoscopic platform for paclitaxel delivery[J]. Adv Healthc Mater, 2014, 3(3):441
[31] Nie Y, Günther M,Gu Z, et al. Pyridylhydrazone-based PEGylation for pH-reversible lipopolyplex shielding[J].Biomaterials, 2011,32(3):858

相似文献/References:

备注/Memo

备注/Memo:
基金项目 国家自然科学基金青年科学基金资助项目(51603150) 作者简介 孙春阳(1988-),男,讲师,博士,研究方向:高分子药物载体;通信作者:于春水,E-mail:705235440@qq.com。
更新日期/Last Update: 2019-04-25