|本期目录/Table of Contents|

[1]李文辉,张 亮,张孝安,等.内皮祖细胞对背根神经节细胞突起及Nogo-A和NgR表达的影响[J].天津医科大学学报,2017,23(05):403-407.
 LI Wen-hui,ZHANG Liang,ZHANG Xiao-an,et al.Effects of endothelial progenitor cells on dorsal root ganglion neurites and the expression of Nogo-A and NgR[J].Journal of Tianjin Medical University,2017,23(05):403-407.
点击复制

内皮祖细胞对背根神经节细胞突起及Nogo-A和NgR表达的影响(PDF)
分享到:

《天津医科大学学报》[ISSN:1006-8147/CN:12-1259/R]

卷:
23
期数:
2017年05期
页码:
403-407
栏目:
基础医学
出版日期:
2017-09-20

文章信息/Info

Title:
Effects of endothelial progenitor cells on dorsal root ganglion neurites and the expression of Nogo-A and NgR
文章编号:
1006-8147(2017)05-0403-05
作者:
李文辉1张 亮1张孝安1吕小琴1柳 艳1周家强2王 凯1
(1.天津医科大学第二医院骨科,天津300211;2.天津医科大学总医院滨海医院骨科,天津300480)
Author(s):
LI Wen-hui1 ZHANG Liang1 ZHANG Xiao-an1 Lü Xiao-qin1 LIU Yan1 ZHOU Jia-qiang2 WANG Kai1
(1.Department of Orthopedics, The Second Hospital, Tianjin Medical University, Tianjin 300211, China; 2.Department of Orthopedics, Bing Hai Hospital, Tianjin Medical University General Hospital, Tianjin 300480, China)
关键词:
内皮祖细胞背根神经节共培养细胞突起Nogo-A NgR
Keywords:
endothelial progenitor cells dorsal root ganglion co-culture neurite Nogo-A NgR
分类号:
R651.3
DOI:
-
文献标志码:
A
摘要:
目的 :观察大鼠内皮祖细胞(EPCs)对乳鼠背根神经节(DRG)细胞突起影响,通过Nogo-A和NgR表达变化探究其可能机制。方法:培养DRG和制备EPCs后分别鉴定,实验组DRG和EPCs共培养,对照组2份等量的DRG共培养。第2和4日分别计算两组DRG突起数量,突起最长和平均长度,统计两组DRG细胞纯度和活性,检测Nogo-A和NgR及mRNA表达。结果:实验组DRG细胞突起数量、突起最长和平均长度在共培养第2和4日较对照组均明显增长(P<0.05),实验组DRG细胞纯度和活性均高于对照组(P<0.05),实验组Nogo-A和NgR mRNA表达量在共培养第2和4日均显著降低(P<0.05),Western Blot结果示实验组Nogo-A和NgR蛋白表达量在第2和4日明显低于对照组(P<0.05)。结论:EPCs通过介导Nogo-A和NgR表达下调,促进DRG细胞突起生长。
Abstract:
Objective: To explore the effect of endothelial progenitor cells (EPCs) on dorsal root ganglions (DRG) neurites by the expression of Nogo-A and NgR. Methods: DRG and the EPCs were prepared and identified separately. EPCs co-culturing with DRG was designed as the experimental group, and DRG co-culturing with DRG was designed as the control group. The number of neurites, the maximum length of neurites, the average length, the purity and vitality were calculated by Image J software on day 2 and day 4. Correspondingly Nogo-A, NgR mRNA and protein were detected. Results: The number of DRG neurites, the maximum length of DRG neurites and the average length elevated dramatically (P<0.05). The purity and vitality of DRG in experimental group were significantly higher (P<0.05). Nogo-A and NgR mRNA in experimental group were significantly lower on day 2 and day 4 (P<0.05). Corresponding protein expression of Nogo-A and NgR in experimental group were significantly lower (P<0.05). Conclusion: EPCs could restraint the expression of Nogo-A and NgR, which may markedly promote the growth of DRG neurites.

参考文献/References:

[1] Silva N A, Sousa N, Reis R L, et al. From basics to clinical: a comprehensive review on spinal cord injury[J]. Prog Neurobiol, 2014,114:25

[2] Bydon M, Lin J, Macki M, et al. The current role of steroids in acute spinal cord injury[J]. World Neurosurg, 2014,82(5):848

[3] Varma A K, Das A, Wallace G, et al. Spinal cord injury: a review of current therapy, future treatments, and basic science frontiers[J]. Neurochem Res, 2013,38(5):895

[4] 李灵玲, 周达岸. 脊髓损伤后Notch信号对神经再生的研究现状[J]. 中国康复医学杂志, 2016,31(4):485

[5] Yin H L, Wang Y L, Li J F, et al. Effects of curcumin on hippocampal expression of NgR and axonal regeneration in Aβ-induced cognitive disorder rats[J]. Genet Mol Res, 2014,13(1):2039

[6] Wang Y, Gu J, Feng X, et al. Effects of Nogo-A receptor antagonist on the regulation of the Wnt signaling pathway and neural cell proliferation in newborn rats with hypoxic ischemic encephalopathy[J]. Mol Med Rep, 2013,8(3):883

[7] Zigdon-Giladi H, Bick T, Lewinson D, et al. Mesenchymal stem cells and endothelial progenitor cells stimulate bone regeneration and mineral density[J]. J Periodontol, 2014,85(7):984

[8] Chotivichit A, Ruangchainikom M, Chiewvit P, et al. Chronic spinal cord injury treated with transplanted autologous bone marrow-derived mesenchymal stem cells tracked by magnetic resonance imaging: a case report[J]. J Med Case Rep, 2015,9:79

[9] Ruschel J, Hellal F, Flynn KC, et al. Axonal regeneration. Systemic administration of epothilone B promotes axon regeneration after spinal cord injury[J]. Science, 2015,348(6232):347

[10] Hamid S, Hayek R. Role of electrical stimulation for rehabilitation and regeneration after spinal cord injury: an overview[J]. Eur Spine J, 2008,17(9):1256

[11] Cheng H, Liu X, Hua R, et al. Clinical observation of umbilical cord mesenchymal stem cell transplantation in treatment for sequelae of thoracolumbar spinal cord injury[J]. J Transl Med, 2014,12:253

[12] Amr S M, Gouda A, Koptan W T, et al. Bridging defects in chronic spinal cord injury using peripheral nerve grafts combined with a chitosan-laminin scaffold and enhancing regeneration through them by co-transplantation with bone-marrow-derived mesenchymal stem cells: case series of 14 patients[J]. J Spinal Cord Med, 2014,37(1):54

[13] 赵素香, 侯英诺, 张子檀, 等. 内皮祖细胞移植联合早期运动改善脊髓损伤区血管再生及后肢功能[J]. 中国组织工程研究, 2016,20(6):883

[14] Hunt D, Coffin R S, Anderson P N. The Nogo receptor, its ligands and axonal regeneration in the spinal cord; a review[J]. J Neurocytol, 2002,31(2):93

[15] Alhoshani A, Vithayathil R, Bandong J, et al. Glutamate provides a key structural contact between reticulon-4 (Nogo-66) and phosphocholine[J]. Biochim Biophys Acta, 2014,1838(9):2350

[16] Gonzenbach R R, Zoerner B, Schnell L, et al. Delayed anti-nogo-a antibody application after spinal cord injury shows progressive loss of responsiveness[J]. J Neurotrauma, 2012,29(3):567

[17] Petrinovic M M, Duncan C S, Bourikas D, et al. Neuronal Nogo-A regulates neurite fasciculation, branching and extension in the developing nervous system[J]. Development, 2010,137(15):2539

[18] Fournier A E, GrandPre T, Strittmatter S M. Identification of a receptor mediating Nogo-66 inhibition of axonal regeneration[J]. Nature, 2001,409(6818):341



相似文献/References:

备注/Memo

备注/Memo:
基金项目 天津市卫生局科技基金资助(2014KZ038)

作者简介 李文辉(1987-),男,硕士在读,研究方向:脊髓损伤;

通信作者:王凯,E-mail: wangkaiy48@126.com。

更新日期/Last Update: 2017-09-20