|本期目录/Table of Contents|

[1]张 毅,谭加兴,叶彦恺,等.基于纳米粒子的TR-FRET传感器用于miRNAs的无扩增检测[J].天津医科大学学报,2015,21(06):521-524.
 ZHANG Yi,TAN Jia-xing,YE Yan-kai,et al. Direct non-amplification detection of miRNAs by time-resolved FRET sensor based on lanthanide-doped nanocrystals [J].Journal of Tianjin Medical University,2015,21(06):521-524.
点击复制

基于纳米粒子的TR-FRET传感器用于miRNAs的无扩增检测(PDF)
分享到:

《天津医科大学学报》[ISSN:1006-8147/CN:12-1259/R]

卷:
21
期数:
2015年06期
页码:
521-524
栏目:
技术与方法
出版日期:
2015-11-20

文章信息/Info

Title:
Direct non-amplification detection of miRNAs by time-resolved FRET sensor based on lanthanide-doped nanocrystals
文章编号:
1006-8147(2015)06-0521-04
作者:
张 毅谭加兴叶彦恺姜 炜孙艳华沈万秋曹海燕靳美娜秦 楠段宏泉
(天津医科大学药学院医用化学教研室,天津市临床药物关键技术重点实验室,天津 300070)
Author(s):
ZHANG Yi TAN Jia-xing YE Yan-kai JIANG Wei SUN Yan-hua SHEN Wan-qiu CAO Hai-yan JIN Mei-na QIN Nan DUAN Hong-quan
(Department of Medical Chemistry,?College of Pharmacy, Tianjin Medical University, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and D(The然OSTIC说),Tianjin 300070, China)
关键词:
镧系金属掺杂纳米粒子时间分辨荧光共振能量转移miRNA传感器无扩增检测
Keywords:
lanthanide-doped' target="_blank" rel="external">">lanthanide-doped nanocrystals time-resolved fluorescence resonance energy transfer miRNA sensor non-amplification detection
分类号:
R9
DOI:
-
文献标志码:
A
摘要:

目的:建立一种基于纳米粒子的时间分辨荧光共振能量转移(FRET)生物传感器用于miRNAs的无扩增检测。方法:以寡核苷酸单链probe I 偶联GdF3:Tb3+纳米粒子作为供体,以寡核苷酸单链probe II 偶联金(Au)纳米粒子作为受体,利用供体与受体之间的FRET检测目标miRNA hsa-miR-122-5p浓度,并通过设置多功能酶标仪的检测延迟去除自发荧光背景以提高灵敏度。结果:该传感器能够高灵敏度、高特异性的检测目标分子,并且对于光照有良好的耐受性,而且能够避免自发荧光干扰。 对hsa-miR-122-5p的检测线性范围为0.1 fmol/L~100 pmol/L,与同类型的RNA荧光传感器的最佳检测限具有可比性。结论:基于纳米粒子的时间分辨FRET生物传感器用于miRNAs的无扩增检测具有良好的灵敏度和特异性。

?

Abstract:
Objective: To develop a miRNA detection method based on the time-resolved (TR) fluorescence resonance energy transfer (FRET) assay. Methods: The GdF3:Tb3+ nanocrystals were coupled with nucleotide probe I as donor, and gold nanocrystals with nucleotide probe II as acceptor. miRNA hsa-miR-122-5p was detected by time-resolved FRET assay, and the short lived background luminescence such as auto-fluorescence was suppressed when determining the long lived fluorescence of Tb3+ by setting appropriate delay time and gate time. Results: The TR-FRET based miRNA sensor was sensitive and selective to hsa-miR-122-5p with a dynamic linear range of 0.1 fmol/L-100 pmol/L, which was compatible with that of the same of sensor. Furthermore, the GdF3:Tb3+ nanocrystals were stable to light irradiation and their lifetime was long enough to avoid autofluorescence. Conclusion: The TR-FRET miRNA sensor for non-amplification detection of hsa-miR-122-5p based on GdF3:Tb3+ nanocrystals, is sensitive and selective.

参考文献/References:

[1]Petri A, Lindow M, Kauppinen S. MicroRNA silencing in primates: towards development of novel therapeutics[J]. Cancer Res, 2009, 69(2): 393[2]Lowery A J, Miller N, Mcneill R E, et al. MicroRNAs as prognostic indicators and therapeutic targets: potential effect on breast Cancer management[J]. Clin Cancer Res, 2008, 14(2): 360
[3]Shi Wei, Gerster K, Alajez N M, et al. MicroRNA-301 mediates proliferation and invasion in human breast Cancer[J]. Cancer Res, 2011, 71(8): 2926
[4]Mcdonald J S, Milosevic D, Reddi H V, et al. Analysis of circulating microRNA: preanalytical and analytical challenges[J]. Clin Chem, 2011, 57(6): 833
[5]Qavi A J, Kindt J T, Gleeson M A, et al. Anti-DNA:RNA antibodies and Silicon photonic microring resonators:increased sensitivity for multiplexed microRNA detection[J]. Anal Chem, 2011,83: 5949.
[6]P?hlmann C, Sprinzl M. Electrochemical detection of microRNAs via gap hybridization assay[J]. Anal Chem, 2010, 82(11): 4434
[7]Chan H M, Chan L S, Wong R N, et al. Direct quantification of single-molecules of microRNA by total internal reflection fluorescence microscopy[J]. Anal Chem, 2010, 82(16): 6911
[8]Broyles D, Cissell K, Kumar M, et al. Solution-phase detection of dual microRNA biomarkers in serum[J]. Anal Bioanal Chem, 2012, 402(1): 543
[9]Ju Q, Liu Y S, Tu D T, et al. Lanthanide-Doped multicolor GdF3 nanocrystals for Time-Resolved photoluminescent biodetection[J]. Chem Eur J , 2011, 17(31): 8549
[10]Li J S, Schachermeyer S, Wang Y, et al. Detection of microRNA by fluorescence amplification based on cation-exchange in nanocrystals[J]. Anal Chem, 2009, 81(23): 9723
[11]Tu Y Q, Wu P, Zhang H, et al. Fluorescence quenching of Gold nanoparticles integrating with a conformation-switched hairpin oligonucleotide probe for microRNA detection[J]. Chem Commun, 2012, 48(87): 10718
[12]Baker M B, Bao G, Searles C D. In vitro quantification of specific microRNA using molecular beacons[J]. Nucleic Acids Res, 2012, 40(2): e13
[13]Labib M, Ghobadloo S M, Khan N, et al. Four-way junction formation promoting ultrasensitive electrochemical detection of microRNA[J]. Anal Chem, 2013, 85(20): 9422
[14]Gu J Q, Shen J, Sun L D, et al. Resonance energy transfer in steady-state and time-decay fluoro-immunoassays for lanthanide nanoparticles based on biotin and avidin affinity[J]. J Phys Chem C, 2008, 112(17): 6589
[15]Tu D T, Liu L Q, Ju Q, et al. Time-resolved FRET biosensor based on amine-functionalized lanthanide-doped NaYF4 nanocrystals[J]. Angew Chem Int Ed Engl, 2011, 50(28): 6306
[16]Hu S, Yang H, Cai R X, et al. Biotin induced fluorescence enhancement in resonance energy transfer and application for bioassay[J]. Talanta, 2009, 80(2): 454
[17]Jiang L, Duan D M, Shen Y, et al. Direct microRNA detection with Universal tagged probe and time-resolved fluorescence technology[J]. Biosens Bioelectron, 2012, 34(1): 291
[18]Yang Y H, Tu D T, Zheng W, et al. Lanthanide-doped Sr2YF7 nanoparticles: controlled synthesis, optical spectroscopy and biodetection[J]. Nanoscale, 2014, 6(19): 11098
[19]Zheng W, Zhou S Y, Chen Z, et al. Sub-10 nm lanthanide-doped CaF2 nanoprobes for time-resolved luminescent biodetection[J]. Angew Chem Int Ed Engl, 2013, 52(26): 6671

相似文献/References:

备注/Memo

备注/Memo:

基金项目 国家自然科学基金资助项目(21305103,21373151,31200753,21205087)

作者简介 张毅(1982-),女,博士,研究方向:纳米材料于生化分析的应用;通信作者:段宏泉,E-mail: duanhq@tijmu.edu.cn



?

更新日期/Last Update: 2015-11-27