|本期目录/Table of Contents|

[1]刁寒,李申奥,郭杰,等.基于网络药理学探讨紫铆素治疗骨质疏松症的分子机制[J].天津医科大学学报,2025,31(02):99-104.
 DIAO Han,LI Shenao,GUO Jie,et al.Exploring the molecular mechanism of butin in the treatment of osteoporosis based on network pharmacology[J].Journal of Tianjin Medical University,2025,31(02):99-104.
点击复制

基于网络药理学探讨紫铆素治疗骨质疏松症的分子机制(PDF)
分享到:

《天津医科大学学报》[ISSN:1006-8147/CN:12-1259/R]

卷:
31卷
期数:
2025年02期
页码:
99-104
栏目:
网络药理学专题
出版日期:
2025-03-20

文章信息/Info

Title:
Exploring the molecular mechanism of butin in the treatment of osteoporosis based on network pharmacology
文章编号:
1006-8147(2025)02-0099-07
作者:
刁寒12李申奥12郭杰23李辉南2张颖245孙天威2
(1.天津中医药大学研究生院,天津301617;2.天津市人民医院脊柱外科,天津300121;3.天津医科大学研究生院,天津300070;4.天津中西医结合重点专科,天津300121;5.天津市康复医学研究所,天津300121)
Author(s):
DIAO Han12LI Shen′ao12GUO Jie 23LI Huinan2ZHANG Ying245SUN Tianwei2
(1.Tianjin University of Traditional Chinese Medicine Graduate School,Tianjin 301617,China;2.Department of Spine Surgery,Tianjin Municipal People′s Hospital,Tianjin 300121,China;3.Tianjin Medical University Graduate School,Tianjin 300070,China;4.Tianjin Key Specialty of Integrated,Traditional Chinese and Western Medicine,Tianjin 300070,China;5.Tianjin Institute of Rehabilitation,Tianjin 300070,China)
关键词:
紫铆素骨质疏松症网络药理学分子对接
Keywords:
butinosteoporosisnetwork pharmacologymolecular docking
分类号:
R681.1
DOI:
-
文献标志码:
A
摘要:
目的:利用网络药理学探索紫铆素治疗骨质疏松症(OP)的分子机制。方法:通过Swiss Target Prediction数据库预测紫铆素的潜在靶点,并在GeneCards数据库中筛选与OP相关的靶点,最终获得60个交集靶点。构建蛋白-蛋白相互作用(PPI)网络,分析靶点间的相互关系。进行基因本体(GO)富集分析和京都基因与基因组百科全书(KEGG)信号通路富集分析,揭示靶点的生物过程、细胞组分和分子功能。采用分子对接的方法验证紫铆素与核心靶点的结合情况。结果:筛选得到紫铆素与OP共有60个交集靶点,通过PPI网络得到丝氨酸/苏氨酸激酶1(Akt1)、糖原合酶激酶3β(GSK3β)、基质金属蛋白酶9(MMP9)、过氧化物酶体增殖物激活受体γ(PPARγ)、类固醇受体辅激活因子(SRC)、雌激素受体1(ESR1)、B细胞淋巴瘤2(BCL2)、低氧诱导因子1A(HIF1A)蛋白是紫铆素治疗骨质疏松的核心靶点。这些靶点蛋白在蛋白质自磷酸化、蛋白质磷酸化、肽基酪氨酸磷酸化及内分泌抵抗、磷脂酰肌醇3激酶-丝氨酸/苏氨酸激酶(PI3K-Akt)信号通路、表皮生长因子受体(EGFR)酪氨酸激酶抑制剂耐药性、雌激素信号通路途径中发挥关键作用。分子对接结果进一步确认紫铆素与Akt1之间存在稳定结合。结论:紫铆素通过多靶点和多通路机制治疗OP。
Abstract:
Objective:To explore the molecular mechanism of butin in the treatment of osteoporosis using network pharmacology. Methods:Potential targets of butin were predicted using the Swiss Target Prediction database,and osteoporosis-related targets were screened from the GeneCards database,resulting in 60 intersection targets. A protein-protein interaction (PPI) network was constructed to analyze the relationships among the targets. Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis was performed to reveal the biological processes,cellular components,and molecular functions of the targets. Molecular docking was employed to verify the binding affinity between butin and the core targets. Results:A total of 60 intersection targets of butin and osteoporosis were screened. Through the PPI network,proteins such as serine/threonine kinase 1 (Akt1),glycogen synthase kinase 3 β (GSK3 β),matrix metalloproteinase 9 (MMP9),peroxisome proliferator activated receptor r (PPAR r),steroid receptor coactivator (SRC),estrogen receptor 1 (ESR1),B-cell lymphoma 2 (BCL2),and hypoxia inducible factor 1A (HIF1A)were obtained as the core targets of butin in the treatment of osteoporosis. These target proteins played key roles in pathways such as protein autophosphorylation,protein phosphorylation,peptidyl tyrosine phosphorylation,endocrine resistance,the PI3K-Akt signaling pathway,EGFR tyrosine kinase inhibitor resistance,and estrogen signaling pathways.Molecular docking results further confirmed a stable binding between butin and Akt1. Conclusion:Butin exerts its therapeutic effects on osteoporosis through multiple targets and pathways.

参考文献/References:

[1] JOHNSTON C B,DAGAR M. Osteoporosis in older adults[J]. Med Clin North Am,2020,104(5):873-884.
[2] SONG S,GUO Y,YANG Y,et al. Advances in pathogenesis and therapeutic strategies for osteoporosis[J]. Pharmacol Ther,2022, 237 (9):108168.
[3] ZHIVODERNIKOV I V,KIRICHENKO T V,MARKINA Y V,et al. Molecular and cellular mechanisms of osteoporosis[J]. Int J Mol Sci,2023,24(21):15772.
[4] DU J,WANG Y,WU C,et al. Targeting bone homeostasis regulation:potential of traditional Chinese medicine flavonoids in the treatment of osteoporosis[J]. Front Pharmacol,2024,15(1):1361864.
[5] SEKARAN S,ROY A,THANGAVELU L. Re-appraising the role of flavonols,flavones and flavonones on osteoblasts and osteoclasts-a review on its molecular mode of action[J]. Chem Biol Interact,2022, 355(5):109831.
[6] OMER A B,DALHAT M H,KHAN M K,et al. Butin mitigates memory impairment in streptozotocin-induced diabetic rats by inhibiting oxidative stress and inflammatory responses[J]. Metabolites,2022, 12(11):1050.
[7] ALZAREA S I,ALASMARI A F,ALANAZI A S,et al. Butin attenuates arthritis in complete freund′s adjuvant-treated arthritic rats:possibly mediated by its antioxidant and anti-inflammatory actions[J]. Front Pharmacol,2022,13(1):810052.
[8] DUAN J,GUAN Y,MU F,et al. Protective effect of butin against ischemia/reperfusion-induced myocardial injury in diabetic mice:involvement of the AMPK/GSK-3β/Nrf2 signaling pathway[J]. Sci Rep,2017,7(1):41491.
[9] QIN X Y,NIU Z C,HAN X L,et al. Anti-perimenopausal osteoporosis effects of erzhi formula via regulation of bone resorption throu-gh osteoclast differentiation:a network pharmacology-integrated experimental study[J]. J Ethnopharmacol,2021,270(7):113815.
[10] SHANNON P,MARKIEL A,OZIER O,et al. Cytoscape:a software environment for integrated models of biomolecular interaction networks[J]. Genome Res,2003,13(11):2498-2504
[11] TANG D,CHEN M,HUANG X,et al. SRplot:a free online platform for data visualization and graphing[J]. PLoS One,2023,18(11):e0294236.
[12] MORRIS G M,HUEY R,LINDSTROM W,et al. AutoDock4 and autodocktools4:automated docking with selective receptor flexibility[J]. J Comput Chem,2009,30(16):2785-2791.
[13] HUANG D W,SHERMAN B T,TAN Q,et al. DAVID bioinformatics resources:expanded annotation database and novel algorithms to better extract biology from large gene lists[J]. Nucleic Acids Res,2007,35(suppl2):W169-W175.
[14] OGATA H,GOTO S,SATO K,et al. KEGG:kyoto encyclopedia of genes and genomes[J]. Nucleic Acids Res,1999,27(1):29-34.
[15] DELANO W L. Pymol:an open-source molecular graphics tool[J]. CCP4 Newsl Protein Crystallogr,2002,40(1):82-92.
[16] LI Y R,LI S,LIN C C. Effect of resveratrol and pterostilbene on aging and longevity[J]. Biofactors,2018,44(1):69-82.
[17] AN J,YANG H,ZHANG Q,et al. Natural products for treatment of osteoporosis:the effects and mechanisms on promoting osteoblast-mediated bone formation[J]. Life Sci,2016,147(4):46-58.
[18] FRESNO VARA J A,CASADO E,DE CASTRO J,et al. PI3K/Akt signalling pathway and cancer[J]. Cancer Treat Rev,2004,30(2):193-204.
[19] MUKHERJEE A,ROTWEIN P. Selective signaling by Akt1 controls osteoblast differentiation and osteoblast-mediated osteoclast development[J]. Mol Cell Biol,2012,32(2):490-500.
[20] HAN J,LI L,ZHANG C,et al. Eucommia,cuscuta,and drynaria extracts ameliorate glucocorticoid-induced osteoporosis by inhibiting osteoclastogenesis through PI3K/Akt pathway[J]. Front Pharmacol,2021,12(1):772944.
[21] DELAISS?魪 J M,ANDERSEN T L,ENGSIG M T,et al. Matrix metalloproteinases (MMP) and cathepsin k contribute differently to osteoclastic activities[J]. Microsc Res Tech,2003,61(6):504-513.
[22] BAROI S,CZERNIK P J,CHOUGULE A,et al. PPARG in osteocytes controls sclerostin expression,bone mass,marrow adiposity and mediates TZD-induced bone loss[J]. Bone,2021,147(6):115913.
[23] SUSVA M,MISSBACH M,GREEN J. Src inhibitors:drugs for the treatment of osteoporosis,cancer or both?[J]. Trends Pharmacol Sci,2000,21(12):489-495.
[24] MIYAZAKI T,SANJAY A,NEFF L,et al. Src kinase activity is essential for osteoclast function[J]. J Biol Chem,2004,279(17):17660-17666.
[25] WANG Y,YANG C,XIE W L,et al. Puerarin concurrently stimulates osteoprotegerin and inhibits receptor activator of NF-?资B ligand (RANKL) and interleukin-6 production in human osteoblastic MG-63 cells[J]. Phytomedicine,2014,21(8-9):1032-1036.
[26] MAJIDINIA M,SADEGHPOUR A,YOUSEFI B. The roles of signaling pathways in bone repair and regeneration[J]. J Cell Physiol,2018,233(4):2937-2948.
[27] LIU X,BRUXVOORT K J,ZYLSTRA C R,et al. Lifelong accumulation of bone in mice lacking pten in osteoblasts[J]. Proc Natl Acad Sci U S A,2007,104(7):2259-2264.
[28] CHAI S,YANG Y,WEI L,et al. Luteolin rescues postmenopausal osteoporosis elicited by ovx through alleviating osteoblast pyroptosis via activating PI3K-Akt signaling[J]. Phytomedicine,2024,128(7):155516.
[29] LIU G,XIE Y,SU J,et al. The role of EGFR signaling in age-related osteoporosis in mouse cortical bone[J]. Faseb J,2019,33(10):11137-11147.

相似文献/References:

[1]邢云芝,李春君,张秋梅,等.中老年男性2型糖尿病患者骨质疏松症与血清胆红素的相关性[J].天津医科大学学报,2015,21(05):426.
 XING Yun-zhi,LI Chun-jun,ZHANG Qiu-mei,et al.Relationship between serum bilirubin levels and osteoporosis in middle and old aged male patients with type 2 diabetes mellitus[J].Journal of Tianjin Medical University,2015,21(02):426.
[2]李菲,李自军.血清b-crosslaps、Cathe K水平变化在骨质疏松症诊断中的应用价值[J].天津医科大学学报,2017,23(06):534.
 LI Fei,LI Zi-jun.Application value of serum b -crosslaps, Cathe K level in diagnosis of osteoporosis[J].Journal of Tianjin Medical University,2017,23(02):534.
[3]洪宇桁,雪 原.lncRNA NEAT1过表达促进破骨细胞分化并抑制 成骨细胞分化诱发骨质疏松[J].天津医科大学学报,2019,25(01):5.
 HONG Yu-heng,XUE yuan.Over-expression of long noncoding RNA NEAT1 induces osteoporosis via promoting osteoclaste differentiation and inhibiting osteoblast differentiation[J].Journal of Tianjin Medical University,2019,25(02):5.
[4]于树军,王敬博,杨 阳,等.骨化三醇对老年髋部脆性骨折患者骨代谢指标和骨密度的影响[J].天津医科大学学报,2020,26(01):44.

备注/Memo

备注/Memo:
基金项目:天津市卫生健康委员会科技项目重点学科专项(TJWJ2022XK016);天津市应用基础研究重点项目(22JCZDJC00250)
作者简介:刁寒(1999-),女,硕士在读,研究方向:中医药防治骨质疏松;通信作者:孙天威,E-mail:billsuntw@163.com。
更新日期/Last Update: 2025-03-20