[1] JOHNSTON C B,DAGAR M. Osteoporosis in older adults[J]. Med Clin North Am,2020,104(5):873-884.
[2] SONG S,GUO Y,YANG Y,et al. Advances in pathogenesis and therapeutic strategies for osteoporosis[J]. Pharmacol Ther,2022, 237 (9):108168.
[3] ZHIVODERNIKOV I V,KIRICHENKO T V,MARKINA Y V,et al. Molecular and cellular mechanisms of osteoporosis[J]. Int J Mol Sci,2023,24(21):15772.
[4] DU J,WANG Y,WU C,et al. Targeting bone homeostasis regulation:potential of traditional Chinese medicine flavonoids in the treatment of osteoporosis[J]. Front Pharmacol,2024,15(1):1361864.
[5] SEKARAN S,ROY A,THANGAVELU L. Re-appraising the role of flavonols,flavones and flavonones on osteoblasts and osteoclasts-a review on its molecular mode of action[J]. Chem Biol Interact,2022, 355(5):109831.
[6] OMER A B,DALHAT M H,KHAN M K,et al. Butin mitigates memory impairment in streptozotocin-induced diabetic rats by inhibiting oxidative stress and inflammatory responses[J]. Metabolites,2022, 12(11):1050.
[7] ALZAREA S I,ALASMARI A F,ALANAZI A S,et al. Butin attenuates arthritis in complete freund′s adjuvant-treated arthritic rats:possibly mediated by its antioxidant and anti-inflammatory actions[J]. Front Pharmacol,2022,13(1):810052.
[8] DUAN J,GUAN Y,MU F,et al. Protective effect of butin against ischemia/reperfusion-induced myocardial injury in diabetic mice:involvement of the AMPK/GSK-3β/Nrf2 signaling pathway[J]. Sci Rep,2017,7(1):41491.
[9] QIN X Y,NIU Z C,HAN X L,et al. Anti-perimenopausal osteoporosis effects of erzhi formula via regulation of bone resorption throu-gh osteoclast differentiation:a network pharmacology-integrated experimental study[J]. J Ethnopharmacol,2021,270(7):113815.
[10] SHANNON P,MARKIEL A,OZIER O,et al. Cytoscape:a software environment for integrated models of biomolecular interaction networks[J]. Genome Res,2003,13(11):2498-2504
[11] TANG D,CHEN M,HUANG X,et al. SRplot:a free online platform for data visualization and graphing[J]. PLoS One,2023,18(11):e0294236.
[12] MORRIS G M,HUEY R,LINDSTROM W,et al. AutoDock4 and autodocktools4:automated docking with selective receptor flexibility[J]. J Comput Chem,2009,30(16):2785-2791.
[13] HUANG D W,SHERMAN B T,TAN Q,et al. DAVID bioinformatics resources:expanded annotation database and novel algorithms to better extract biology from large gene lists[J]. Nucleic Acids Res,2007,35(suppl2):W169-W175.
[14] OGATA H,GOTO S,SATO K,et al. KEGG:kyoto encyclopedia of genes and genomes[J]. Nucleic Acids Res,1999,27(1):29-34.
[15] DELANO W L. Pymol:an open-source molecular graphics tool[J]. CCP4 Newsl Protein Crystallogr,2002,40(1):82-92.
[16] LI Y R,LI S,LIN C C. Effect of resveratrol and pterostilbene on aging and longevity[J]. Biofactors,2018,44(1):69-82.
[17] AN J,YANG H,ZHANG Q,et al. Natural products for treatment of osteoporosis:the effects and mechanisms on promoting osteoblast-mediated bone formation[J]. Life Sci,2016,147(4):46-58.
[18] FRESNO VARA J A,CASADO E,DE CASTRO J,et al. PI3K/Akt signalling pathway and cancer[J]. Cancer Treat Rev,2004,30(2):193-204.
[19] MUKHERJEE A,ROTWEIN P. Selective signaling by Akt1 controls osteoblast differentiation and osteoblast-mediated osteoclast development[J]. Mol Cell Biol,2012,32(2):490-500.
[20] HAN J,LI L,ZHANG C,et al. Eucommia,cuscuta,and drynaria extracts ameliorate glucocorticoid-induced osteoporosis by inhibiting osteoclastogenesis through PI3K/Akt pathway[J]. Front Pharmacol,2021,12(1):772944.
[21] DELAISS?魪 J M,ANDERSEN T L,ENGSIG M T,et al. Matrix metalloproteinases (MMP) and cathepsin k contribute differently to osteoclastic activities[J]. Microsc Res Tech,2003,61(6):504-513.
[22] BAROI S,CZERNIK P J,CHOUGULE A,et al. PPARG in osteocytes controls sclerostin expression,bone mass,marrow adiposity and mediates TZD-induced bone loss[J]. Bone,2021,147(6):115913.
[23] SUSVA M,MISSBACH M,GREEN J. Src inhibitors:drugs for the treatment of osteoporosis,cancer or both?[J]. Trends Pharmacol Sci,2000,21(12):489-495.
[24] MIYAZAKI T,SANJAY A,NEFF L,et al. Src kinase activity is essential for osteoclast function[J]. J Biol Chem,2004,279(17):17660-17666.
[25] WANG Y,YANG C,XIE W L,et al. Puerarin concurrently stimulates osteoprotegerin and inhibits receptor activator of NF-?资B ligand (RANKL) and interleukin-6 production in human osteoblastic MG-63 cells[J]. Phytomedicine,2014,21(8-9):1032-1036.
[26] MAJIDINIA M,SADEGHPOUR A,YOUSEFI B. The roles of signaling pathways in bone repair and regeneration[J]. J Cell Physiol,2018,233(4):2937-2948.
[27] LIU X,BRUXVOORT K J,ZYLSTRA C R,et al. Lifelong accumulation of bone in mice lacking pten in osteoblasts[J]. Proc Natl Acad Sci U S A,2007,104(7):2259-2264.
[28] CHAI S,YANG Y,WEI L,et al. Luteolin rescues postmenopausal osteoporosis elicited by ovx through alleviating osteoblast pyroptosis via activating PI3K-Akt signaling[J]. Phytomedicine,2024,128(7):155516.
[29] LIU G,XIE Y,SU J,et al. The role of EGFR signaling in age-related osteoporosis in mouse cortical bone[J]. Faseb J,2019,33(10):11137-11147.
[1]邢云芝,李春君,张秋梅,等.中老年男性2型糖尿病患者骨质疏松症与血清胆红素的相关性[J].天津医科大学学报,2015,21(05):426.
XING Yun-zhi,LI Chun-jun,ZHANG Qiu-mei,et al.Relationship between serum bilirubin levels and osteoporosis in middle and old aged male patients with type 2 diabetes mellitus[J].Journal of Tianjin Medical University,2015,21(02):426.
[2]李菲,李自军.血清b-crosslaps、Cathe K水平变化在骨质疏松症诊断中的应用价值[J].天津医科大学学报,2017,23(06):534.
LI Fei,LI Zi-jun.Application value of serum b -crosslaps, Cathe K level in diagnosis of osteoporosis[J].Journal of Tianjin Medical University,2017,23(02):534.
[3]洪宇桁,雪 原.lncRNA NEAT1过表达促进破骨细胞分化并抑制
成骨细胞分化诱发骨质疏松[J].天津医科大学学报,2019,25(01):5.
HONG Yu-heng,XUE yuan.Over-expression of long noncoding RNA NEAT1 induces osteoporosis via promoting osteoclaste differentiation and inhibiting osteoblast differentiation[J].Journal of Tianjin Medical University,2019,25(02):5.
[4]于树军,王敬博,杨 阳,等.骨化三醇对老年髋部脆性骨折患者骨代谢指标和骨密度的影响[J].天津医科大学学报,2020,26(01):44.