|本期目录/Table of Contents|

[1]曾晓娇,田玲,张景云.基于铁死亡通路的高糖诱导人肾小管上皮细胞损伤的机制研究[J].天津医科大学学报,2024,30(03):239-244.[doi:10.20135/j.issn.1006-8147.2024.03.0239]
 ZENG Xiaojiao,TIAN Ling,ZHANG Jingyun.Exploring the mechanism of high glucose-induced injury in human renal tubular epithelial cells based on the ferroptosis pathway[J].Journal of Tianjin Medical University,2024,30(03):239-244.[doi:10.20135/j.issn.1006-8147.2024.03.0239]
点击复制

基于铁死亡通路的高糖诱导人肾小管上皮细胞损伤的机制研究(PDF)
分享到:

《天津医科大学学报》[ISSN:1006-8147/CN:12-1259/R]

卷:
30卷
期数:
2024年03期
页码:
239-244
栏目:
基础医学
出版日期:
2024-05-20

文章信息/Info

Title:
Exploring the mechanism of high glucose-induced injury in human renal tubular epithelial cells based on the ferroptosis pathway
文章编号:
1006-8147(2024)03-0239-06
作者:
曾晓娇田玲张景云
(天津医科大学朱宪彝纪念医院、天津市内分泌研究所、国家卫健委激素与发育重点实验室、天津市代谢性疾病重点实验室,天津 300134)
Author(s):
ZENG XiaojiaoTIAN LingZHANG Jingyun
(NHC Key Laboratory of Hormones and Development,Tianjin Key Laboratory of Metabolic Diseases,Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology,Tianjin Medical University,Tianjin 300134,China)
关键词:
肾小管上皮细胞Ferrostatin-1高糖铁死亡
Keywords:
renal tubular epithelial cells ferrostatin-1 high glucose ferroptosis
分类号:
R587.1
DOI:
10.20135/j.issn.1006-8147.2024.03.0239
文献标志码:
A
摘要:
目的:探讨铁死亡对高糖损伤人肾小管上皮(HK-2)细胞的影响。方法:将HK-2细胞系分为正常对照组(Ctrl)、高糖组(HG)、甘露醇组(MA)和高糖+Ferrostatin-1组(HG+Fer-1)。试剂盒检测细胞内活性氧簇(ROS)、铁离子(Iron)、丙二醛(MDA)和谷胱甘肽(GSH)水平。透射电子显微镜观察细胞内线粒体形态学变化。qPCR和Western印迹检测溶质载体家族7成员11(SLC7A11)、谷氨酸-半胱氨酸连接酶催化亚基(GCLC)、谷胱甘肽过氧化物酶4(GPX4)、转铁蛋白受体1(TFR-1)mRNA和蛋白表达。结果:与Ctrl组相比,HG组细胞内ROS、Iron和MDA水平升高(F=17.72、14.33、39.53,均P<0.01),GSH含量下降(F=18.24,P<0.001);线粒体嵴断裂和膜密度增加;SLC7A11、GPX4和GCLC mRNA水平降低(F=22.22、19.43、22.3,均P<0.001),TFR-1 mRNA水平升高(F=10.01,P<0.01);SLC7A11、GPX4和GCLC 蛋白水平降低(F=12.74、18.79、17.49,均P<0.01),TFR-1 蛋白水平升高(F=15.08,P<0.01)。与HG组相比,HG+Fer-1组细胞内ROS、Iron和MDA水平降低(P<0.05、P<0.01、P<0.001),GSH含量增加(P<0.01);线粒体形态恢复正常;SLC7A11、GPX4和GCLC mRNA水平上调(P<0.01、P<0.01、P<0.001),TFR-1 mRNA水平下调(P<0.05);SLC7A11、GPX4和GCLC 蛋白水平上调(均P<0.01),TFR-1 蛋白水平下调(P<0.01)。结论:高糖诱导HK-2细胞铁死亡,促进细胞损伤。
Abstract:
Objective: To investigate the effect of ferroptosis on high-glucose injured human renal tubular epithelial(HK-2) cells. Methods: HK-2 cell line was divided into four groups: normal control group(Ctrl), high glucose group(HG), mannitol group (MA), and high glucose+Ferrostatin-1 group(HG+Fer-1). The reagent kit was used to detect intracellular levels of reactive oxygen species(ROS), iron ions(Iron), malondialdehyde(MDA), and glutathione(GSH). Transmission electron microscopy was performed to observe the morphological changes of intracellular mitochondria. qPCR and Western blotting were performed to detect the mRNA and protein expression of solute carrier family 7 member 11(SLC7A11), glutathione peroxidase4(GPX4), glutamate-cysteine ligase catalytic subunit (GCLC), and transferrin receptor 1(TFR-1). Results: Compared with the Ctrl group, the HG group exhibited increased levels of ROS, Iron and MDA(F=17.72, 13.2, 39.53, all P<0.01) and decreased level of GSH(F=18.24, P<0.001); mitochondrial cristae rupture and membrane density were increased; SLC7A11, GPX4 and GCLC mRNA levels were decreased(F=22.22, 19.43, 22.3, all P<0.001) and TFR-1 mRNA level was increased(F=10.01, P<0.01); SLC7A11, GPX4 and GCLC protein levels decreased (F=12.74, 18.79, 17.49, all P<0.01) and TFR-1 protein level was increased(F=15.08, P<0.01). Compared with the HG group, intracellular ROS, Iron and MDA levels were decreased in the HG+Fer-1 group(P<0.05, P<0.01, P<0.001), GSH content was increased(P<0.01); mitochondrial morphology was returned to normal; SLC7A11, GPX4 and GCLC mRNA levels were upregulated(P<0.01, P<0.01, P<0.001), and TFR-1 mRNA levels were down-regulated(P<0.05); SLC7A11, GPX4 and GCLC protein levels were up-regulated(all P<0.01), and TFR-1 protein levels were down-regulated(P<0.01). Conclusion: High glucose induces ferroptosis and promotes cell injury in HK-2 cells.

参考文献/References:

[1] LEE W C,LEE Y T,LI L C,et al. The number of comorbidities predicts renal outcomes in patients with stage 3(-)5 chronic kidney disease[J]. J Clin Med,2018,7(12):493.
[2] UMANATH K,LEWIS J B. Update on diabetic nephropathy: core curriculum 2018[J]. Am J Kidney Dis,2018,71(6):884-895.
[3] HASEGAWA K,WAKINO S,SIMIC P,et al. Renal tubularsirt1 attenuates diabetic albuminuria by epigenetically suppressing clau-din-1 overexpression in podocytes[J]. Nat Med,2013,19(11):1496.
[4] MAGRI C J,FAVA S. The role of tubular injury in diabetic ne-phropathy[J]. Eur J Intern Med,2009,20(6):551-555.
[5] LLORENS-CEBRIA C,MOLINA-VAN D B M,VERGARA A,et al. Antioxidant roles of SGLT2 inhibitors in the kidney[J]. Bio-molecules,2022,12(1):143.
[6] SU L J,ZHANG J H,GOMEZ H,et al. Reactive oxygen species-induced lipid peroxidation in apoptosis,autophagy,and ferropto-sis[J]. Oxid Med Cell Longev,2019: 5080843.
[7] 韩立坤,李明举,毛宇,等. 糖尿病肾病大鼠铁超载对内皮功能及氧化应激的影响[J]. 中国老年学杂志,2019,37(22): 5515-5518.
[8] CHAUDHARY K,CHILAKALA A,ANANTH S,et al. Renal iron accelerates the progression of diabetic nephropathy in the HFE gene knockout mouse model of iron overload[J]. Am J Physiol Renal Physiol,2019,317(2):F512-F517.
[9] MOCZULSKI D K,GRZESZCZAK W,GAWLIK B. Role of hemo-chromatosis C282Y and H63D mutations in HFE gene in development of type 2 diabetes and diabetic nephropathy[J]. Diabetes Care,2001,24(7):1187-1191.
[10] ASLEH R,NAKHOUL F M,MILLER-LOTAN R,et al. Poor lysosomal membrane integrity in proximal tubule cells of haptoglobin 2-2 genotype mice with diabetes mellitus[J]. Free Radic Biol Med,2012,53(4):779-786.
[11] MATSUMOTO M,SASAKI N,TSUJINO T,et al. Iron restriction prevents diabetic nephropathy in Otsuka Long-Evans Tokushima fatty rat[J]. Ren Fail,2013,35(8):1156-1162.
[12] LEE H,ZANDKARIMI F,ZHANG Y,et al. Energy-stress-mediated AMPK activation inhibits ferroptosis[J]. Nat Cell Biol,2020,22(2):225-234.
[13] 罗永兰,周素娴. 氧化应激诱导糖尿病肾病的研究进展[J]. 慢性病学杂志,2022,23(10):1528-1534.
[14] STOCKWELL B R,FRIEDMANN ANGELI J P,BAYIR H,et al. Ferroptosis: a regulated cell death nexus linking metabolism,redox biology,and disease[J]. Cell,2017,171(2):273-285.
[15] LI J,CAO F,YIN H L,et al. Ferroptosis: past,present and future[J]. Cell Death Dis,2020,11(2):88.
[16] LI J M,SHAH A M. ROS generation by nonphagocytic NADPH oxidase: potential relevance in diabetic nephropathy[J]. J Am Soc Nephrol,2003,14(8 Suppl 3): S221-226.
[17] URSINI F,MAIORINO M. Lipid peroxidation and ferroptosis: the role of GSH and GPx4[J]. Free Radic Biol Med,2020,152:175-185.
[18] WANG L,LIU Y,DU T,et al. ATF3 promotes erastin-induced ferroptosis by suppressing system Xc[J]. Cell Death Differ,2020,27(2):662-675.
[19] MAIORINO M,CONRAD M,URSINI F. GPx4,lipid peroxidation,and cell death: discoveries,rediscoveries,and open issues[J]. Antioxid Redox Signal,2018,29(1):61-74.
[20] ZHANG H,FORMAN H J. Glutathione synthesis and its role in redox signaling[J]. Semin Cell Dev Biol,2012,23(7):722-728.
[21] LI L B,CHAI R,ZHANG S,et al. Iron exposure and the cellular mechanisms linked to neuron degeneration in adult mice[J]. Cells,2019,8(2):198.
[22] FENG H,SCHORPP K,JIN J,et al. Transferrin receptor is a specific ferroptosis marker[J]. Cell Rep,2020,30(10):3411-3423,e7.

相似文献/References:

[1]臧 勇,田 园,李卫东.雷公藤甲素通过调节TGF-β1信号通路和Hippo信号通路影响肾小管上皮细胞的上皮-间充质转化[J].天津医科大学学报,2019,25(03):205.
 ZANG Yong,TIAN Yuan,LI Wei-dong.Triptolide affects epithelial-mesenchymal transition of renal tubular epithelial cells by regulating TGF-β1 and Hippo signaling pathways[J].Journal of Tianjin Medical University,2019,25(03):205.

备注/Memo

备注/Memo:
作者简介 曾晓娇(1998-),女,硕士在读,研究方向:内分泌与代谢病;通信作者:张景云,E- mail: kathyzhang2004@163.com。
更新日期/Last Update: 2024-05-20