|本期目录/Table of Contents|

[1]朱 亮,陈业刚.基于失巢凋亡相关标志物预测膀胱癌患者预后[J].天津医科大学学报,2024,30(01):56-64.[doi:10.20135/j.issn.1006-8147.2024.01.0056]
 ZHU Liang,CHEN Yegang.Prognosis of patients with bladder cancer predicted by biomarker associated with anoikis[J].Journal of Tianjin Medical University,2024,30(01):56-64.[doi:10.20135/j.issn.1006-8147.2024.01.0056]
点击复制

基于失巢凋亡相关标志物预测膀胱癌患者预后(PDF)
分享到:

《天津医科大学学报》[ISSN:1006-8147/CN:12-1259/R]

卷:
30卷
期数:
2024年01期
页码:
56-64
栏目:
临床医学
出版日期:
2024-01-01

文章信息/Info

Title:
Prognosis of patients with bladder cancer predicted by biomarker associated with anoikis
文章编号:
1006-8147(2024)01-0056-09
作者:
朱 亮陈业刚
(天津医科大学第二医院泌尿外科,天津300211)
Author(s):
ZHU LiangCHEN Yegang
(Department of Urology,Tianjin Institute of Urology,The Second Hospital,Tianjin Medical University,Tianjin 300211,China)
关键词:
失巢凋亡膀胱癌肿瘤微环境预后模型免疫疗法
Keywords:
anoikisbladder cancertumor microenvironmentprognostic modelimmunotherapy
分类号:
R694+.7
DOI:
10.20135/j.issn.1006-8147.2024.01.0056
文献标志码:
A
摘要:
目的:探讨失巢凋亡相关基因在膀胱癌中的作用和预后价值。方法:从Genecards 数据库和Harmonizome数据库获取失巢凋亡相关基因。Cox和LASSO回归用来得到具有预后价值的基因并构建风险预后模型。列线图、校准图、累积危险曲线和决策曲线用来验证模型准确性。研究不同风险组间在生存预后及免疫景观上的差异。采用实时定量PCR测定人正常膀胱细胞SV-HUV-1、T24、J82、5637膀胱癌细胞系中F10表达水平,将构建的含有全长的pcDNA3.1 质粒及阴性对照质粒瞬时转染T24细胞; 采用CCK-8、集落刺激实验检测F10高表达对细胞增殖能力的影响; 利用Transwell实验检测 PCA3 高表达对细胞侵袭能力的影响。结果:获得9个失巢凋亡相关基因(DNMT1、F10、FASN、PDGFRA、SATB1、MSLN、MYC、CALR、CSPG4)用来构建预后模型。列线图、校准图、累积危险曲线和决策曲线显示,模型能较好的评估膀胱癌患者的预后。根据风险评分分组,低危组患者的总生存期(OS)明显长于高危组。免疫微环境中,CD8+ T细胞(P=0.015)、M0巨噬细胞(P=0.005)、M2巨噬细胞(P =0.05)和中性粒细胞(P=0.009)呈现出较大差异。高危组与低危组间免疫评分具有统计学意义(P<0.001)。经外部验证证实失巢凋亡基因与膀胱癌的预后相关。以F10为例,RT-qPCR结果表明T24细胞系相对表达水平低于正常膀胱癌上皮(t=3.031,P<0.05);CCK-8实验中,高表达F10组24、48、72 h增殖活性低于对照组(t=2.578、5.528、19.25,均P<0.001);集落刺激形成实验表明高表达F10组细胞克隆形成数低于对照组(t=10.570,P<0.001);Transwell迁移侵袭实验中,高表达F10组细胞迁移及侵袭数目均低于对照组(t=8.115,P<0.005)。结论:共获得9个失巢凋亡相关基因,其可以作为潜在的治疗靶点应用于临床。
Abstract:
Objective: To explore the role and prognostic value of anoikis-related genes(ARGs) in bladder cancer. Methods: ARGs were obtained from the Genecards and Harmonizome databases. Cox and LASSO regressions were used to obtain genes with prognostic value and to construct risk prognostic models. The accuracy of the model was validated using nomogram, calibration plots, cumulative hazard curves and decision curve analysis. Further, we explored differences in survival prognosis and immune landscapes among different risk groups. Finally,real-time quantitative PCR was used to determine the expression level of F10 in normal human bladder cells SV-HUV-1 and T24, J82, 5637 bladder cancer cell lines,and the constructed plasmid containing full length pcDNA3.1 and the negative control plasmids were transiently transfected into T24 cells;CCK-8 and colony formation assay were applied to evaluate the influence of high F10 expression on cell proliferation. Transwell assay was used to test the effect of PCA3 on cell migration. Results: Nine ARGs(DNMT1, F10, FASN, PDGFRA, SATB1, MSLN, MYC, CALR, CSPG4) were obtained for use in constructing prognostic models. The nomogram, calibration plots, cumulative hazard curves, and decision curves showed that the model was able to evaluate the prognosis of patients with bladder cancer reasonably well. By grouping patients based on risk scores, patients in the low-risk group had significantly longer overall survival(OS) than those in the high-risk group.In addition, CD8+ T cells(P=0.015), M0 macrophages(P=0.005), M2 macrophages (P=0.05), and neutrophils(P=0.009) showed large differences in the immune microenvironment. The immune scores were statistically significant between the high-risk and low-risk groups(P<0.001). At last, the association of ARGs with the prognosis of bladder cancer was further confirmed by external validation.Taking F10 as an example, RT-qPCR results showed that the relative expression level of T24 cell line was lower than that of normal bladder cancer epithelium cells(t=3.031, P<0.05). In the CCK-8 assay, the proliferative activities at 24, 48, and 72 h in the high F10-expressing group were lower than those in the control group(t=2.578, 5.528, 19.25, all P<0.001); the colony-forming assays showed that the number of cell clone formations in the high F10-expressing group was lower than that in the control group(t=10.570, P<0.001); and in the transwell migration and invasion assay, the number of cell migration and invasion in the high F10-expressing group was also lower than that in the control group(t=8.115, P<0.005). Conclusion: A total of 9 ARGs are obtained, which are available for clinical application as potential therapeutic targets.

参考文献/References:

[1] SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249.
[2] BERDIK C. Unlocking bladder cancer[J]. Nature, 2017, 551(767 9): S34-S35.
[3] CUMBERBATCH MGK, JUBBER I, BLACK P C, et al. Epidemiology of bladder cancer: a systematic review and contemporary update of risk factors in 2018[J]. EurUrol, 2018, 74(6): 784-795.
[4] LENIS A T, LEC P M, CHAMIE K, et al. Bladder cancer: a review[J]. JAMA, 2020, 324(19): 1980.
[5] PATEL V G, OH W K, GALSKY M D. Treatment of muscle-invasive and advanced bladder cancer in 2020[J]. CA Cancer J Clin, 2020, 70(5): 404-423.
[6] WITJES J A, BRUINS H M, CATHOMAS R, et al. European association of urology guidelines on muscle-invasive and metastatic bladder cancer: summary of the 2020 guidelines[J]. Eur Urol, 2021, 79(1): 82-104.
[7] CHIARUGI P, GIANNONI E. Anoikis: a necessary death program for anchorage-dependent cells[J]. Biochem Pharmacol, 2008, 76(11): 1352-1364.
[8] FRISCH S M, RUOSLAHTI E. Integrins and anoikis[J]. Curr Opin Cell Biol, 1997, 9(5): 701-706.
[9] PAOLI P, GIANNONI E, CHIARUGI P. Anoikis molecular pathways and its role in cancer progression[J]. Biochim Biophys Acta, 2013, 1833(12): 3481-3498.
[10] ADESHAKIN F O, ADESHAKIN A O, AFOLABI L O, et al. Mechanisms for modulating anoikis resistance in cancer and the relevance of metabolic reprogramming[J]. Front Oncol, 2021, 11: 626 577.
[11] HAN H JUN, SUNG J Y, KIM S H, et al. Fibronectin regulates anoikis resistance via cell aggregate formation[J]. Cancer Lett, 2021, 508: 59-72.
[12] REBHAN M, CHALIFA-CASPI V, PRILUSKY J, et al. GeneCa-rds: integrating information about genes, proteins and diseases[J]. Trends Genet, 1997, 13(4): 163.
[13] ROUILLARD A D, GUNDERSEN G W, FERNANDEZ N F, et al. The harmonizome: a collection of processed datasets gathered to serve and mine knowledge about genes and proteins[J]. Database, 2016, 2016: baw100.
[14] BROOKS N A, O′DONNELL M A. Combination intravesical therapy[J]. Urol Clin North Am, 2020, 47(1): 83-91.
[15] JIANG D M, GUPTA S, KITCHLU A, et al. Defining cisplatin eligibility in patients with muscle-invasive bladder cancer[J]. Nat Rev Urol, 2021, 18(2): 104-114.
[16] LIU D, QIU X, XIONG X, et al. Current updates on the role of reactive oxygen species in bladder cancer pathogenesis and therapeutics[J]. Clin Transl Oncol, 2020, 22(10): 1687-1697.
[17] PAOLI P, GIANNONI E, CHIARUGI P. Anoikis molecular pathways and its role in cancer progression[J]. Biochim Biophys Acta, 2013, 1833(12): 3481-3498.
[18] SU H, SI X Y, TANG W R, et al. The regulation of anoikis in tumor invasion and metastasis:the regulation of anoikis in tumor invasion and metastasis[J]. Yi Chuan, 2013, 35(1): 10-16.
[19] ANTONI S, FERLAY J, SOERJOMATARAM I, et al. Bladder cancer incidence and mortality: a global overview and recent trends[J]. Eur Urol, 2017, 71(1): 96-108.
[20] WONG K K. DNMT1 as a therapeutic target in pancreatic cancer: mechanisms and clinical implications[J]. Cell Oncol, 2020, 43(5): 779-792.
[21] LIU H, SONG Y, QIU H, et al. Downregulation of FOXO3a by DNMT1 promotes breast cancer stem cell properties and tumorigenesis[J]. Cell Death Different, 2020, 27(3): 966-983.
[22] WONG K K. DNMT1: a key drug target in triple-negative breast cancer[J]. Semin Cancer Biol, 2021, 72: 198-213.
[23] 张梦竹,庞战军. F10基因在宫颈癌组织中的表达[J]. 南方医科大学学报,2017,37(6):792-796.
[24] SUN T, ZHONG X, SONG H, et al. Anoikis resistant mediated by FASN promoted growth and metastasis of osteosarcoma[J]. Cell Death Disease, 2019, 10(4): 298.
[25] KIM T W, HONG H K, LEE C, et al. The role of PDGFRA as a therapeutic target in young colorectal cancer patients[J]. J Translat Med, 2021, 19(1): 446.
[26] QI H, FU X, LI Y, et al. SATB1 promotes epithelial-mesenchymal transition and metastasis in prostate cancer[J]. Oncol Lett, 2017, 13(4): 2577-2582.
[27] RAMíREZ-SALAZAR E G, SALINAS-SILVA L C, VáZQUEZ-MANRíQUEZ M E, et al. Analysis of microRNA expression signatures in malignant pleural mesothelioma, pleural inflammation, and atypical mesothelial hyperplasia reveals common predictive tumorigenesis-related targets[J]. Exper Molecul Pathol, 2014, 97(3): 375-385.
[28] LIU Y, ZHU C, TANG L, et al. MYC dysfunction modulates stemness and tumorigenesis in breast cancer[J]. Internat J Biol Sci, 2021, 17(1): 178-187.
[29] MO H, GUAN J, MO L, et al. ATF4 regulated by MYC has an important function in anoikis resistance in human osteosarcoma cells[J]. Mol Med Rep, 2018,17(3):3658-3666.
[30] GAO F, MU X, WU H, et al. Calreticulin(CALR)-induced activa-tion of NF-κB signaling pathway boosts lung cancer cell proliferation[J]. Bioengineered, 2022, 13(3): 6856-6865.
[31] WANG X, WANG Y, YU L, et al. CSPG4 in cancer: multiple roles[J]. Curr Mol Med, 2010, 10(4): 419-429.
[32] XIAO Y, YU D. Tumor microenvironment as a therapeutic target in cancer[J]. Pharmacol Ther, 2021, 221: 107753.
[33] RUBIO C, MUNERA-MARAVILLA E, LODEWIJK I, et al. Macrophage polarization as a novel weapon in conditioning tumor microenvironment for bladder cancer: can we turn demons into gods?[J]. Clin Transl Oncol, 2019, 21(4): 391-403.
[34] CHEN Z, LIU G, LIU G, et al. Defining muscle-invasive bladder cancer immunotypes by introducing tumor mutation burden, CD8+ T cells, and molecular subtypes[J]. Hereditas, 2021, 158(1): 1.
[35] 李炜,曾静媛,罗波,等. 膀胱癌患者高表达活化的CD4+记忆性T细胞和CD8+T细胞和低表达M0巨噬细胞与临床预后佳有关[J]. 细胞与分子免疫学杂志,2020,36(2):97-103.
[36] 周瑾,陈士岭,邢福祺,等. 葡萄胎发病新基因F10与滋养细胞肿瘤侵袭相关性研究[J]. 南方医科大学学报,2005,25(2):171-173.
[37] 周瑾,梁卫华,李冰,等. 葡萄胎发病新基因F10在不同肿瘤组织的表达[J]. 广东医学,2005,26(5):596-597.
[38] SONG Y L, ZHANG G, PANG Z J, et al. Effects of gene F10 over-expression on the tumorigenicity of A549 cells[J]. Med J Chin People′s Liberation Army, 2012,37: 676-680.
[39] LIU X, TANG H, WANG Z, et al. F10 gene hypomethylation, a putative biomarker for glioma prognosis[J]. J Neurooncol, 2012,107(3):479-485.

相似文献/References:

[1]陈可新,郝晓东,薄志强,等.≤pT2N0M0膀胱癌根治术后近期复发的影响因素分析[J].天津医科大学学报,2017,23(04):357.
 CHEN Ke-xin,HAO Xiao-dong,BO Zhi-qiang,et al.Influencing factors and prognosis of short-term relapse after radical cystectomy of primary bladder cancer(≤pT2N0M0)[J].Journal of Tianjin Medical University,2017,23(01):357.
[2]孟旭英,李珍瑾,郭剑超.组蛋白甲基转移酶EZH2抑制剂联合抗癌药物对膀胱癌细胞功能影响的研究[J].天津医科大学学报,2018,24(01):25.
 MENG Xu-ying,LI Zhen-jin,GUO Jian-chao.Effect of histone methyltransferase EZH2 inhibitor combined with anticancer drugs on migration and proliferation of bladder cancer cells[J].Journal of Tianjin Medical University,2018,24(01):25.
[3]刘 莉 康家旗 综 述,刘晓强 审 校.膀胱癌外周血生物标志物研究进展[J].天津医科大学学报,2018,24(06):566.
[4]刘志飞,张志宏,邢力永,等.RRM1 mRNA与吉西他滨药物膀胱灌注治疗膀胱癌疗效的关系[J].天津医科大学学报,2019,25(01):51.
 LIU Zhi-fei,ZHANG Zhi-hong,XING Li-yong,et al.The relationship between expression of RRM1 mRNA and efficacy of intravesical of gemcitabine in patients with nonmuscle-insive bladder caner[J].Journal of Tianjin Medical University,2019,25(01):51.
[5]付真睿,盛 飞,张昌文,等.SOX6在膀胱癌发生发展中的作用及相关机制[J].天津医科大学学报,2019,25(04):373.
 FU Zhen-rui,SHENG Fei,ZHANG Chang-wen,et al.The characteristics of SOX6 in development of bladder cancer and relevant mechanism[J].Journal of Tianjin Medical University,2019,25(01):373.
[6]王银蕾,杨 瀚,高 杰,等.PITX2启动子甲基化及其与膀胱癌临床病理的关系[J].天津医科大学学报,2020,26(01):39.
 WANG Yin-lei,YANG Han,GAO Jie,et al.Methylation of PITX2 promoter and relationship with clinical pathology of bladder cancer[J].Journal of Tianjin Medical University,2020,26(01):39.
[7]王玉杰,沈冲,高深,等.长链非编码RNA-FENDRR在膀胱癌组织中的表达及临床意义[J].天津医科大学学报,2020,26(05):445.
 WANG Yu-jie,SHEN Chong,GAO Shen,et al.Expression of long non-coding RNA FENDRR in human bladder cancer tissues and Clinical significance[J].Journal of Tianjin Medical University,2020,26(01):445.
[8]朱建强,郑志文,付青峰,等.人工纳米材料在膀胱癌诊疗中的研究进展[J].天津医科大学学报,2022,28(05):563.
[9]陆益,于佳熙,梁政.氯丙嗪对膀胱癌BT-B细胞迁移功能的影响[J].天津医科大学学报,2022,28(06):621.
 LU Yi,YU Jia-xi,LIANG Zheng.The effect of chlorpromazine on the migration of BT-B cellsin bladder cancer[J].Journal of Tianjin Medical University,2022,28(01):621.
[10]孙晓宇 张志宏 张昌文.膀胱癌类器官模型的研究进展[J].天津医科大学学报,2023,29(05):564.

备注/Memo

备注/Memo:
基金项目 天津市卫健委一般项目(2021171)
作者简介 朱亮(1998-),男,硕士在读,研究方向:泌尿外科;通信作者:陈业刚,E-mail:yegangchen@tmu.edu.cn。
更新日期/Last Update: 2024-01-01