[1] MEZA R,MEERNIK C,JEON J,et al. Lung cancer incidence trends
by gender,race and histology in the United States,1973-2010 [J].
PLoS One,2015,10(3):e0121323.
[2] 李媛,谢惠康,武春燕. WHO 胸部肿瘤分类(第5 版)中肺肿瘤部
分解读[J]. 中国癌症杂志,2021,31(7):574-580.
[3] YOSHIZAWA A,MOTOI N,RIELY G J,et al. Impact of proposed
IASLC/ATS/ERS classification of lung adenocarcinoma:prognostic
subgroups and implications for further revision of staging based on
analysis of 514 stage I cases [J]. Mod Pathol,2011,24(5):653-664.
[4] YANAGAWA N,SHIONO S,ABIKO M,et al. New IASLC/ATS/ERS
classification and invasive tumor size are predictive of disease recurrence
in stage I lung adenocarcinoma[J]. J Thorac Oncol,2013,8(5):
612-618.
[5] 陶雪敏,方瑞,吴重重,等. 深度学习模型对纯磨玻璃结节肺腺
癌病理亚型的预测分析[J]. 中国医学科学院学报,2020,42(4):
477-484.
[6] XIA X,GONG J,HAO W,et al. Comparison and fusion of deep
learning and radiomics features of ground-glass nodules to predict
the invasiveness risk of stage-I lung adenocarcinomas in CT scan [J].
Front Oncol,2020,10:418.
[7] HE K,ZHANG X,REN S,et al. Deep residual learning for image
recognition; proceedings of the Proceedings of the IEEE conference
on computer vision and pattern recognition,F,2016 [C].
[8] IOFFE S,SZEGEDY C. Batch normalization:accelerating deep network
training by reducing internal covariate shift[J]. arXiv preprint
arXiv:1502.03167,2015.
[9] PRECHELT L. Early stopping -but when? [M]. Neural Networks:
Tricks of the trade. Springer,1998:55-69.
[10] KINGMA D P,BA J. Adam:a method for stochastic optimization [J].
arXiv preprint arXiv:1412.6980,2014.
[11] SMITH L N. Cyclical learning rates for training neural networks; proceedings
of the 2017 IEEE Winter Conference on Applications of
Computer Vision(WACV),F,2017 [C]. IEEE.
[12] PASZKE A,GROSS S,MASSA F,et al. Pytorch:an imperative style,
high-performance deep learning library[J]. Adv Neural Inf Process
Syst,2019,32:8026-8037.
[13] DELONG E R,DELONG D M,CLARKE-PEARSON D L. Comparing
the areas under two or more correlated receiver operating characteristic
curves:a nonparametric approach[J]. Biometrics,1988,44(3):
837-845.
[14] WANG X,LI Q,CAI J,et al. Predicting the invasiveness of lung adenocarcinomas
appearing as ground-glass nodule on CT scan using
multi-task learning and deep radiomics[J]. Transl Lung Cancer Res,
2020,9(4):1397-1406.
[15] WANG S,WANG R,ZHANG S,et al. 3D convolutional neural network
for differentiating pre-invasive lesions from invasive adenocarcinomas
appearing as ground-glass nodules with diameters≤3 cm
using HRCT [J]. Quant Imag Med Surg,2018,8(5):491-499.
[1]孟祥虹,吴迪嘉,马信龙,等.深度卷积神经网络技术自动诊断肋骨骨折的CT应用初探[J].天津医科大学学报,2022,28(02):205.
MENG Xiang-hong,WU Di-jia,MA Xin-long,et al.Preliminary study on CT application of deep convolutional neural network in automatic diagnosis of rib fractures[J].Journal of Tianjin Medical University,2022,28(03):205.