[1] CHI H J,CHEN M L,YANG X C,et al. Progress in therapies for myocardial
ischemia reperfusion injury[J]. Curr Drug Targets,2017,
18(15):1712-1721.
[2] SLUIJTER J P G,DAVIDSON S M,BOULANGER C M,et al. Extracellular
vesicles in diagnostics and therapy of the ischaemic heart:
position paper from the working group on cellular biology of the heart
of the European Society of Cardiology [J]. Cardiovasc Res,2018,
114(1):19-34.
[3] LUO H,LI X H,LI T Z M,et al. MicroRNA-423-3p exosomes derived
from cardiac fibroblasts mediates the cardioprotective effects
of ischaemic post-conditioning[J]. Cardiovasc Res,2019,115(7):
1189-1204.
[4] POE A J,KNOWLTON A A. Exosomes and cardiovascular cell-cell
communication[J]. Essays Biochem,2018,62(2):193-204.
[5] LIU M,WANG Y,ZHU Q,et al. Protective effects of circulating microvesicles
derived from ischemic preconditioning on myocardial ischemia/
reperfusion injury in rats by inhibiting endoplasmic reticulum
stress[J]. Apoptosis,2018,23(7/8):436-448.
[6] ONG S B,KATWADI K,KWEK X Y,et al. Non -coding RNAs as
therapeutic targets for preventing myocardial ischemia-reperfusion
injury[J]. Expert Opin Ther Targets,2018,22(3):247-261.
[7] BELTRAMI C,BESNIER M,SHANTIKUMAR S,et al. Human pericardial
fluid contains exosomes enriched with cardiovascular -ex -
pressed microRNAs and promotes therapeutic angiogenesis[J]. Mol
Ther, 2017,25(3):679-693.
[8] CHEN Y Q, ZHAO Y F, CHEN W Q, et al. MicroRNA-133 overexpression
promotes the therapeutic efficacy of mesenchymal stem
cells on acute myocardial infarction[J]. Stem Cell Res Ther,2017,
8(1):268.
[9] ZHU W W, SUN L, ZHAO P C, et al. Macrophage migration inhibitory
factor facilitates the therapeutic efficacy of mesenchymal stem
cells derived exosomes in acute myocardial infarction through upregulating
miR-133a-3p[J]. J Nanobiotechnology, 2021,19(1):61.
[10] 彭兴, 林玲, 周祥群, 等. miR-133b 靶向YES1 抑制心肌缺血再
灌注引起的心肌细胞凋亡和活性氧簇的积累[J]. 南方医科大学
学报, 2020,40(10):1390-1398.
[11] JIN G R, LI W F, SONG F, et al. Fluorescent conjugated polymer
nanovector for in vivo tracking and regulating the fate of stem cells
for restoring infarcted myocardium[J]. Acta Biomater,2020,109:
195-207.
[12] TROTTA M C,FERRARO B,MESSINA A,et al. Telmisartan cardioprotects
from the ischaemic/hypoxic damage through a miR-1-dependent
pathway[J]. J Cell Mol Med,2019,23(10):6635-6645.
[13] GONG J J,ZHOU F,XIE S M,et al. Caveolin -3 protects diabetic
hearts from acute myocardial infarction/reperfusion injury through
β2AR,cAMP/PKA,and BDNF/TrkB signaling pathways [J]. Aging
(Albany NY),2020,12(14):14300-14313.
[14] WANG Z,WANG S P,SHAO Q,et al. Brain-derived neurotrophic
factor mimetic,7,8 -dihydroxyflavone,protects against myocardial
ischemia by rebalancing optic atrophy 1 processing [J]. Free Radic
Biol Med,2019,145:187-197.
[15] LI K S,BAI Y,LI J,et al. LncRNA HCP5 in hBMSC-derived exosomes
alleviates myocardial ischemia reperfusion injury by sponging
miR-497 to activate IGF1/PI3K/AKT pathway[J]. Int J Cardiol,2021,
342:72-81.
[16] SUN Z X,XIE Y J,LEE R J,et al. Myocardium-targeted transplantation
of PHD2 shRNA -modified bone mesenchymal stem cells
through ultrasound -targeted microbubble destruction protects the
heart fromacutemyocardial infarction[J]. Theranostics,2020,10(11):
4967-4982.
[17] LIU Z B,TAO B,FAN S Z,et al. Over-expression of microRNA-145
drives alterations in beta -adrenergic signaling and attenuates cardiac
remodeling in heart failure post myocardial infarction[J]. Aging(
Albany NY),2020,12(12):11603-11622.
[18] ROZIER R,PAUL R,HOUNOUM B M,et al. Pharmacological preconditioning
protects from ischemia/reperfusion -induced apoptosis
by modulating Bcl-xL expression through a ROS-dependent mechanism[
J]. FEBS J,2021,288(11):3547-3569.
[19] 王艺璐,刘淼,尚曼,等. 心肌缺血预适应循环血中微囊泡对大鼠
心肌I/R损伤的作用[J].中国应用生理学杂志,2016,32(2):97-101.
[1]刘超,韦苏,张琨玮,等.缺氧预适应诱导人脐静脉内皮细胞释放的微囊泡对正常H9c2细胞的作用[J].天津医科大学学报,2018,24(02):101.
LIU Chao,WEI Su,ZHANG Kun-wei,et al.Effects of hypoxia preconditioning induced human umbilical vein endothelial cells microvesicles on normal H9c2 cells[J].Journal of Tianjin Medical University,2018,24(03):101.