[1] Hutson T H, Di Giovanni S. The translational landscape in spinal cord injury: focus on neuroplasticity and regeneration[J]. Nat Rev Neurol, 2019, 15(12): 732
[2] Pruss H, Tedeschi A, Thiriot A, et al. Spinal cord injury-induced immunodeficiency is mediated by a sympathetic-neuroendocrine adrenal reflex[J]. Nat Neurosci, 2017, 20(11): 1549
[3] Torres-Espin A, Forero J, Fenrich K K, et al. Eliciting inflammation enables successful rehabilitative training in chronic spinal cord injury[J]. Brain, 2018, 141(7): 1946
[4] Wang X J, Peng C H, Zhang S, et al. Polysialic-acid-based micelles promote neural regeneration in spinal cord injury therapy[J]. Nano Lett, 2019, 19(2): 829
[5] O'Shea T M, Burda J E, Sofroniew M V. Cell biology of spinal cord injury and repair[J]. J Clin Invest, 2017, 127(9): 3259
[6] Dias D O, Kim H, Holl D, et al. Reducing pericyte-derived scarring promotes recovery after spinal cord injury[J]. Cell, 2018, 173(1):153
[7] Wu M J, Vinit S, Chen C L, et al. 5-HT7 receptor inhibition transiently improves respiratory function following daily acute intermittent hypercapnic-hypoxia in rats with chronic midcervical spinal cord contusion[J]. Neurorehabil Neural Repair, 2020, 34(4): 333
[8] Burnside E R, De Winter F, Didangelos A, et al. Immune-evasive gene switch enables regulated delivery of chondroitinase after spinal cord injury[J]. Brain, 2018, 141(8): 2362
[9] Hollis E R, 2nd, Ishiko N, Yu T, et al. Ryk controls remapping of motor cortex during functional recovery after spinal cord injury[J]. Nat Neurosci, 2016, 19(5): 697
[10] 谭波涛, 刘捷, 虞乐华, 等. 成年小鼠颈5脊髓钳夹损伤模型的制备与评价[J]. 中国脊柱脊髓杂志, 2019, 29(2): 164
[11] 黄志平, 林俊育, 刘俊豪, 等. 小鼠颈脊髓半侧挫伤模型的建立及其组织学特点[J]. 中国临床解剖学杂志, 2019, 37(1): 40
[12] Basso D M, Beattie M S, Bresnahan J C. A sensitive and reliable locomotor rating scale for open field testing in rats[J]. J Neurotrauma, 1995, 12(1): 1
[13] 李敏, 杨孝, 向武, 等. 大鼠脊髓损伤动物模型建立的研究进展[J]. 世界最新医学信息文摘, 2018, 18(72): 111
[14] 李晓彬, 刘涛, 周俊锋, 等. 实验性大鼠脊髓损伤模型的制备及研究进展[J]. 中国实用神经疾病杂志, 2016, 19(23): 78