|本期目录/Table of Contents|

[1]杜迎新 综 述 邓靖宇,梁 寒 审 校.DNA甲基化在胃癌中的研究进展[J].天津医科大学学报,2019,25(02):189-193.
点击复制

DNA甲基化在胃癌中的研究进展(PDF)
分享到:

《天津医科大学学报》[ISSN:1006-8147/CN:12-1259/R]

卷:
25卷
期数:
2019年02期
页码:
189-193
栏目:
综述
出版日期:
2019-03-20

文章信息/Info

Title:
-
文章编号:
1006-8147(2019)02-0189-05
作者:
杜迎新 综 述 邓靖宇梁 寒 审 校
(天津医科大学肿瘤医院胃部肿瘤科 ,国家肿瘤临床医学研究中心, 天津市“肿瘤防治”重点实验室 ,天津市恶性肿瘤临床医学研究中心, 天津 300060)
Author(s):
-
关键词:
表观遗传 基因 甲基化 肿瘤
Keywords:
-
分类号:
R735.2
DOI:
-
文献标志码:
A
摘要:
胃癌发生和进展是多因素、多基因、多步骤参与的复杂分子机制调控过程,其中DNA甲基化研究为深入了解胃癌的发病机制提供了新的思路和方向。肿瘤相关基因甲基化失衡导致的基因激活或失活与胃癌的发生、进展密切相关。抑癌基因启动子区高甲基化是胃癌发生的重要机制,可与之发生在同一肿瘤中的变化还包括局部CpG岛高甲基化和整个基因组广泛低甲基化。胃癌相关基因启动子区CpG岛甲基化异常改变对其表达造成的影响可稳定遗传给子代细胞。目前DNA甲基化作为潜在可行的肿瘤生物标志物为胃癌的发生和进展提供了一个合理的分子机制解释而引起了广泛的关注。笔者就目前胃癌研究领域常见DNA甲基化研究报道作一综述,以期阐明DNA甲基化在胃癌发生及进展中的意义和价值。
Abstract:
-

参考文献/References:


[1] Schroeder A, Heller D A, Winslow M M, et al. Treating metastatic cancer with nanotechnology[J].Nat Rev Cancer, 2011, 12(1):39
[2] Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs[J].Cancer Res, 1986, 46(12 Pt 1):6387
[3] Blanco E, Shen H, Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery[J].Nat Biotechnol, 2015, 33(9):941
[4] Min Y Z, Caster J M, Eblan M J, et al. Clinical translation of nanomedicine[J]. Chem Rev, 2015, 115(19, SI):11147
[5] Hare J I, Lammers T, Ashford M B, et al. Challenges and strategies in anti-cancer nanomedicine development: An industry perspective[J]. Adv Drug Deliv Rev, 2017, 108:25
[6] Shi J, Kantoff P W, Wooster R, et al. Cancer nanomedicine: progress, challenges and opportunities[J].Nat Rev Cancer,2017,17(1):20
[7] Liu Y, Xu C F, Iqbal S, et al. Responsive nanocarriers as an emerging platform for cascaded delivery of nucleic acids to cancer[J].Adv Drug Deliv Rev, 2017, 115:98
[8] Behzadi S, Serpooshan V, Tao W, et al. Cellular uptake of nanoparticles: journey inside the cell[J].Chem Soc Rev, 2017, 46(14):4218
[9] Chen H, Zhang W, Zhu G, et al. Rethinking cancer nanotheranostics[J]. Nature Reviews Materials, 2017, 2:17024
[10] Ge Z, Liu S. Functional block copolymer assemblies responsive to tumor and intracellular microenvironments for site-specific drug delivery and enhanced imaging performance[J].Chem Soc Rev, 2013, 42(17):7289
[11] Du J Z , Mao C Q,Yuan Y Y, et al. Tumor extracellular acidity-activated nanoparticles as drug delivery systems for enhanced cancer therapy[J].Biotechnol Adv,2013,32(4):789
[12] Feng L Z, Dong Z L,Tao D L, et al. The acidic tumor microenvironment:atarget for smart cancer nano-theranostics[J].Natl Sci Rev, 2018,5(2):269
[13] Li H J, Du J Z, Du X J, et al. Stimuli-responsive clustered nanoparticles for improved tumor penetration and therapeutic efficacy[J].Proc Natl Acad Sci U S A,2016,113(15):4164
[14] Li H J, Du J Z, Liu J, et al. Smart superstructures with ultrahigh pH-sensitivity for targeting acidic tumor microenvironment: instantaneous size switching and improved tumor penetration[J].ACS Nano,2016,10(7):6753
[15] Li J J, Han Y, Chen Q X, et al. Dual endogenous stimuli-responsive polyplex micelles as smart two-step delivery nanocarriers for deep tumor tissue penetration and combating drug resistance of cisplatin[J].J Mater Chem B,2014,2(13):1813
[16] Lee E S, Na K, Bae Y H.Super pH-sensitive multifunctional polymeric micelle[J].Nano Lett, 2005, 5(2):325
[17] Du J Z, Sun T M, Song W J, et al. A tumor-acidity-activated charge-conversional nanogel as an intelligent vehicle for promoted tumoral-cell uptake and drug delivery[J]. Angew Chem Int Ed Engl, 2010,49(21):3621
[18] Du J Z, Du X J, Mao C Q, et al. Tailor-made dual pH-sensitive polymer-doxorubicin nanoparticles for efficient anticancer drug delivery[J]. J Am Chem Soc,2011, 133(44):17560
[19] Yuan Y Y, Mao C Q, Du X J, et al. Surface charge switchable nanoparticles based on zwitterionic polymer for enhanced drug delivery to tumor[J]. Adv Mater, 2012, 24(40):5476
[20] Yang X Z, Du X J, Liu Y, et al. Rational design of polyion complex nanoparticles to overcome cisplatin resistance in cancer therapy[J]. Adv Mater, 2014, 26(6):931
[21] Sun C Y, Liu Y, Du J Z, et al. Facile generation of tumor pH-labile linkage-bridged block copolymer for expeditious chemotherapeutic delivery[J]. Angew Chem Int Ed, 2016,128(3):1010
[22] Sun C Y,ShenS,Xu C F, et al.Tumor acidity-sensitive polymeric vector for active targeted siRNA delivery[J].J Am Chem Soc,2015, 137(48):15217
[23] Xu C F, Zhang H B, Sun C Y, et al. Tumor acidity-sensitive linkage-bridged block copolymer for therapeutic siRNA delivery[J]. Biomaterials, 2016, 88:48
[24] Bashyal S,Noh G, Keum T, et al. Cell penetrating peptides as an innovative approach for drug delivery;then,present and the future[J].J Pharm Invest, 2016, 46(3):205
[25] Ruoslahti E. Tumor penetrating peptides for improved drug delivery[J].Adv Drug Deliv Rev,2017(3):110
[26] Li D, Ma Y, Du J, et al.Tumor acidity/NIR controlled interaction of transformable nanoparticle with biological systems for cancer therapy[J].Nano Lett,2017,17(5):2871
[27] Guo X, Wang L, Duval K, et al. Dimeric drug polymeric micelles with Acid-Active tumor targeting and FRET-Traceable drug release[J].Adv Mater, 2018,30(3):1705436
[28] Yu H J, Xu Z A, Wang D G, et al. Intracellular pH-activatable PEG-b-PDPA wormlike micelles for hydrophobicdrug delivery[J].Polym Chem, 2013, 4(19):5052
[29] Du Y, Chen W, Zheng M, et al. pH-sensitive degradable chimaericpolymersomes for the intracellular release of doxorubicin hydrochloride[J].Biomaterials, 2012,33(29):7291
[30] Zou J, Zhang F, Zhang S, et al. Poly(ethylene oxide)–block -polyphosphoester-graft-paclitaxel conjugates with acid-labile linkages as a pH-sensitive and functional nanoscopic platform for paclitaxel delivery[J]. Adv Healthc Mater, 2014, 3(3):441
[31] Nie Y, Günther M,Gu Z, et al. Pyridylhydrazone-based PEGylation for pH-reversible lipopolyplex shielding[J].Biomaterials, 2011,32(3):858

相似文献/References:

[1]刘利维,刘春雨. MicroRNAs 与前列腺癌的表观遗传学研究进展[J].天津医科大学学报,2014,20(01):74.
[2]张佳慧,阎晗,胡德庆.利用CRISPR/Cas9技术构建Aff4基因敲除B16-F10细胞系及AFF4的多克隆抗体制备[J].天津医科大学学报,2023,29(04):372.
 ZHANG Jia-hui,YAN Han,HU De-qing.Aff4 gene knockout stable B16-F10 cell line generation with CRISPR/Cas9 system and anti-AFF4 polyclonal antibody preparation[J].Journal of Tianjin Medical University,2023,29(02):372.

备注/Memo

备注/Memo:
基金项目 国家自然科学基金资助项目(81572372);重大慢性非传染性疾病防控研究(2016YFC1303202);国家重点研发计划“精准医学研究”计划(2017YFC0908300);天津市应用基础与前沿技术研究计划(15JCYBJC24800) 作者简介 杜迎新(1988-),男,硕士在读,研究方向:胃癌的临床及基础研究;通信作者:梁寒,E-mail:tjlianghan@126.com。
更新日期/Last Update: 2019-04-25